Stochastic Optimization for Design under Uncertainty with Dependent Probability Measures
具有相关概率测量的不确定性下设计的随机优化
基本信息
- 批准号:1462385
- 负责人:
- 金额:$ 28.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many complex systems and engineering structures are plagued by uncertainties in manufacturing processes and operating environments. Conventional design approaches rely on heuristically derived safety factors and do not account quantitatively for the statistical variation of a system response. In this project, the principal investigator will conduct fundamental research on design optimization of complex systems in the presence of statistically dependent uncertainty. Novel methods will be developed to determine the best design alternative considering that the system behavior is uncertain and driven by dependent input variables. Potential engineering applications include ground vehicle design for improved durability and crashworthiness, fatigue- and fracture-resistant design for civil and aerospace applications, and reliable design of microelectronic packaging under harsh environments. Beyond engineering, the results from this research will benefit the U.S. economy and society through potential application in areas such as energy, finance, management, scheduling, and transportation and logistics, where optimization under uncertainty plays a vital role. This research is multi-disciplinary, encompassing several disciplines, including engineering, computer science, mathematics, and statistics. It will help broaden participation of underrepresented groups in research and positively impact engineering education.The objectives of this project are to build a solid mathematical foundation, devise efficient numerical algorithms, and develop practical tools for design optimization subject to uncertainty characterized by dependent probability distributions. The effort will involve (1) a new theoretical development of the generalized polynomial dimensional decomposition method for a high-dimensional stochastic response; (2) new formulae and scalable algorithms for calculating the statistical moments and reliability, followed by design sensitivity analysis; and (3) new reliability-based and robust optimization algorithms for shape and topology designs. Due to innovative calculation of the expansion coefficients, the generalized decomposition method will be efficiently implemented regardless of the size of the stochastic design problem. The innovative formulation of the statistical moment and reliability analyses and design sensitivities, which requires a single or at most a few stochastic simulations for all possible designs, will markedly accelerate the optimization process, potentially producing breakthrough solutions to stochastic design problems.
许多复杂的系统和工程结构都受到制造过程和操作环境中的不确定性的困扰。 传统的设计方法依赖于启发性的安全因子,并且不能定量解释系统响应的统计变化。 在该项目中,主要研究者将在存在统计依赖性不确定性的情况下对复杂系统设计优化进行基础研究。 考虑到系统行为不确定并且由依赖性输入变量驱动,将开发新的方法来确定最佳设计替代方案。 潜在的工程应用程序包括用于提高耐用性和撞车性的地面车辆设计,用于民用和航空航天应用的疲劳和抗裂缝设计以及在恶劣环境下的微电子包装的可靠设计。 除工程外,这项研究的结果还将通过在能源,金融,管理,日程安排以及运输和物流等领域的潜在应用来使美国经济和社会受益,而在不确定性下的优化起着至关重要的作用。 这项研究是多学科的,涵盖了几个学科,包括工程,计算机科学,数学和统计。 它将有助于扩大代表性不足的群体参与研究和对工程教育的积极影响。该项目的目标是建立一个可靠的数学基础,设计有效的数值算法,并开发出以相关概率分布为特征的不确定性的设计优化的实用工具。这项工作将涉及(1)用于高维随机响应的广义多项式分解方法的新理论发展; (2)用于计算统计矩和可靠性的新公式和可扩展算法,然后进行设计灵敏度分析; (3)针对形状和拓扑设计的新的基于可靠性和强大的优化算法。由于扩展系数的创新计算,无论随机设计问题的大小如何,都将有效地实施广义分解方法。统计时刻和可靠性分析和设计敏感性的创新表述,该敏感性最多需要单个或几个随机模拟,以明显加速优化过程,从而为随机设计问题产生突破性解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharif Rahman其他文献
Frequency of COVID-19 Infection in Patients with Sudden Loss of Smell
嗅觉突然丧失患者感染 COVID-19 的频率
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.1
- 作者:
Md Harun Ar Rashid Talukder;Sharif Rahman;A. Taous;Md. Abul Hasnat Joarder - 通讯作者:
Md. Abul Hasnat Joarder
Stochastic multiscale fracture analysis of three-dimensional functionally graded composites
- DOI:
10.1016/j.engfracmech.2010.09.006 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Sharif Rahman;Arindam Chakraborty - 通讯作者:
Arindam Chakraborty
Higher-order moments of spline chaos expansion
- DOI:
10.1016/j.probengmech.2024.103666 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:
- 作者:
Sharif Rahman - 通讯作者:
Sharif Rahman
Sharif Rahman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharif Rahman', 18)}}的其他基金
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
- 批准号:
2317172 - 财政年份:2023
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
High-Dimensional Stochastic Design Optimization by Spline Dimensional Decomposition
通过样条维分解进行高维随机设计优化
- 批准号:
1933114 - 财政年份:2019
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
CDS&E: Stochastic Isogeometric Analysis by Hierarchical B-Spline Sparse Grids
CDS
- 批准号:
1607398 - 财政年份:2016
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
Novel Computational Methods for Solving Random Eigenvalue Problems
解决随机特征值问题的新颖计算方法
- 批准号:
1130147 - 财政年份:2011
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
Reliability-Based Design Optimization of Large-Scale Complex Systems
大型复杂系统基于可靠性的设计优化
- 批准号:
0969044 - 财政年份:2010
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
A New Decomposition Method for Solving Stochastic Eigenvalue Problems in Computational Dynamics
求解计算动力学中随机特征值问题的新分解方法
- 批准号:
0653279 - 财政年份:2007
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
Fatigue Durability and Reliability of Functionally Graded Materials
功能梯度材料的疲劳耐久性和可靠性
- 批准号:
0409463 - 财政年份:2004
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
Development of New Dimension-Reduction Methods for Reliability, Simulation, and Design of Complex Engineering Systems
开发复杂工程系统可靠性、仿真和设计的新降维方法
- 批准号:
0355487 - 财政年份:2004
- 资助金额:
$ 28.78万 - 项目类别:
Continuing Grant
Probabilistic Simulation of Fracture by Meshless Methods
无网格方法的断裂概率模拟
- 批准号:
9900196 - 财政年份:1999
- 资助金额:
$ 28.78万 - 项目类别:
Continuing Grant
CAREER: Stochastic Fracture Mechanics for Nonlinear Structures
职业:非线性结构的随机断裂力学
- 批准号:
9733058 - 财政年份:1998
- 资助金额:
$ 28.78万 - 项目类别:
Standard Grant
相似国自然基金
基于隐式几何描述的梯度随机点阵结构多尺度建模与优化设计
- 批准号:12372200
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
随机路网环境下基于多阶段和多源数据的应急救援可靠网络设计及优化算法研究
- 批准号:72301236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智能入侵下移动自主系统随机巡逻策略优化设计
- 批准号:62303314
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
近断层区惯容减震高层建筑随机振动分析和可靠性优化设计新方法
- 批准号:52378484
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于地震数据重构的节点随机地震观测系统优化设计
- 批准号:42374133
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Co-Design of Neural Operators and Stochastic Optimization Algorithms for Learning Surrogates for PDE-Constrained Optimization Under Uncertainty
不确定性下偏微分方程约束优化学习代理的神经算子和随机优化算法的协同设计
- 批准号:
2324643 - 财政年份:2023
- 资助金额:
$ 28.78万 - 项目类别:
Continuing Grant
Stochastic optimization of network design and transportation problems
网络设计和运输问题的随机优化
- 批准号:
RGPIN-2018-05390 - 财政年份:2022
- 资助金额:
$ 28.78万 - 项目类别:
Discovery Grants Program - Individual
Stochastic optimization of network design and transportation problems
网络设计和运输问题的随机优化
- 批准号:
RGPIN-2018-05390 - 财政年份:2021
- 资助金额:
$ 28.78万 - 项目类别:
Discovery Grants Program - Individual
Floquet Theory for Stochastic Temporal Networks and Optimization Theory for the Design of Schedules for COVID-19
随机时间网络的 Floquet 理论和 COVID-19 时间表设计的优化理论
- 批准号:
2052720 - 财政年份:2021
- 资助金额:
$ 28.78万 - 项目类别:
Continuing Grant
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
- 批准号:
10323474 - 财政年份:2021
- 资助金额:
$ 28.78万 - 项目类别: