Engineering Membrane Platforms Based on Active Transporter Architectures

基于主动转运体架构的工程膜平台

基本信息

  • 批准号:
    1460922
  • 负责人:
  • 金额:
    $ 28.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-10-31
  • 项目状态:
    已结题

项目摘要

1403750HindsUniversity of KentuckyCurrent membrane technology is based primarily on pore size and chemical functionality. Naturally occurring protein channels far exceed any man-made engineering pores with selectivities exceeding parts per million and flow rates 10,000 fold faster. The PI proposes to imitate natural protein channel structures and nanometer scale electrode geometries to increase flow. If successful, this could potentially revolutionize membrane function by providing a solution to the long standing trade-off between high chemical selectivity and high processing rate. Two promising material platforms are Carbon Nanotube (CNT) Membranes and nm-scale electrode multilayers on anodized aluminum oxide (AAO). There are three key attributes unique to Carbon Nanotube (CNT) membranes: 1) atomically flat hydrophobic graphitic core that induces a near perfect slip layer for dramatic fluid flow 2) functional chemistry by necessity is at the cut entrances to the CNT cores for gatekeeper activity and 3) CNTs are conductive allowing for electrochemical transformation and application of electric field. Needed is a method to generate fluid flow (with chemical interaction or selectivity) in the entrance to CNT pores and have the plug flow rapidly transfer down the fast CNT core. Electro-osmotic pumping is found to have similar flow enhancements as pressure driven pumping and can accelerate selectively bound species within plug flow Peptide libraries allow the screening of 109 peptide combinations to find highly selective affinity chemistry far beyond what is achieved with simple coordination chemistry. However, strong binding coefficients result in kinetics too slow for monolayer-based pumping cycles. The PIs have found that modest voltages are sufficient to release cationic bound rare-earth ions, from high surface area conductive AAO surface. Multilayer electrodes allow for pumping cycles to direct strong electric fields in a high porosity AAO system. This allows for a very general separation system based on rapid cycles of binding targets to specific peptides at the pore entrances followed by electrostatic release pumping across the membrane. Due to the large breadth of peptide affinity libraries, this concept is applied to a large number of commercially relevant applications in energy storage, energy processing, chemical sensors, selective pharmaceutical separations, drug delivery and water purification. Support of this research area will enable many educational opportunities related to novel nanometer scale materials fabrication, characterization and application into separations science and engineering.
1403750Hinds 肯塔基大学 当前的膜技术主要基于孔径和化学功能。天然存在的蛋白质通道远远超过任何人造工程孔,选择性超过百万分之一,流速快 10,000 倍。 PI 建议模仿天然蛋白质通道结构和纳米级电极几何形状来增加流量。如果成功,这可能会为高化学选择性和高处理速率之间长期存在的权衡提供解决方案,从而彻底改变膜功能。两个有前景的材料平台是碳纳米管 (CNT) 膜和阳极氧化铝 (AAO) 上的纳米级电极多层膜。碳纳米管 (CNT) 膜具有三个独特的关键属性:1) 原子级平坦的疏水性石墨核心,可产生近乎完美的滑移层,实现戏剧性的流体流动 2) 功能化学必然存在于 CNT 核心的切割入口处,以实现把关活动3) CNT 具有导电性,可进行电化学转化和施加电场。需要一种在 CNT 孔入口处产生流体流(具有化学相互作用或选择性)并使活塞流快速沿快速 CNT 核心向下传递的方法。研究发现电渗泵具有与压力驱动泵类似的流动增强作用,并且可以加速塞流内选择性结合的物质。肽库允许筛选 109 种肽组合,以发现远远超出简单配位化学所能实现的高度选择性亲和化学。然而,强结合系数导致动力学对于基于单层的泵送循环来说太慢。 PI 发现,适度的电压足以从高表面积导电 AAO 表面释放阳离子结合的稀土离子。多层电极允许泵循环在高孔隙率 AAO 系统中引导强电场。这使得非常通用的分离系统基于在孔入口处将目标与特定肽结合的快速循环,然后通过膜进行静电释放泵送。由于肽亲和库的范围广泛,这一概念被应用于能量存储、能量处理、化学传感器、选择性药物分离、药物输送和水净化等大量商业相关应用。对这一研究领域的支持将带来许多与新型纳米级材料制造、表征以及分离科学和工程应用相关的教育机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Hinds其他文献

Structure and function of natural proteins for water transport: general discussion.
水运输天然蛋白质的结构和功能:一般讨论。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    M. Baaden;M. Barboiu;R. Bill;S. Casanova;Chun;M. Conner;V. Freger;B. Gong;Artur Góra;Bruce Hinds;Andreas Horner;G. Hummer;Manish Kumar;M. Lokesh;S. Mitra;A. Noy;P. Pohl;A. Sadet;M. Sansom;S. Törnroth;Harish Vashisth
  • 通讯作者:
    Harish Vashisth

Bruce Hinds的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Hinds', 18)}}的其他基金

Engineering Membrane Platforms Based on Active Transporter Architectures
基于主动转运体架构的工程膜平台
  • 批准号:
    1403750
  • 财政年份:
    2014
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
CAREER: Aligned Carbon Nanotube Composite Array as Permeable Membrane for Selective Chemical Separations and Sensing
职业:对齐碳纳米管复合阵列作为选择性化学分离和传感的渗透膜
  • 批准号:
    0348544
  • 财政年份:
    2004
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
Japan JSPS Program: Novel Single Electron Coulomb Blockade Transistor as a Probe in the Study of Si02/Si Interface
日本JSPS计划:新型单电子库仑封锁晶体管作为Si02/Si界面研究的探针
  • 批准号:
    9724743
  • 财政年份:
    1998
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Fellowship Award
Japan JSPS Program: Novel Single Electron Coulomb Blockade Transistor as a Proble in the Study of Si02/Si Interface
日本JSPS计划:新型单电子库仑封锁晶体管作为Si02/Si界面研究中的问题
  • 批准号:
    9813040
  • 财政年份:
    1998
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Fellowship Award

相似国自然基金

配体锚定抗体平台的建立及在多次跨膜蛋白药物研发中的应用
  • 批准号:
    82373774
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
同步辐射固液界面原位研究平台及在石墨烯-生物膜体系中的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于Zr-MOFs膜的涂层实现医用镁合金可控腐蚀及表面多功能平台构建与机制研究
  • 批准号:
    22175068
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
基于光声成像平台探讨大麻素受体激活调节房水葡萄膜淋巴外流的机制研究
  • 批准号:
    82000888
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于生物膜电阻抗关键参数提取的乳饮品中细菌含量高灵敏度检测
  • 批准号:
    61871165
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of platforms for sorting, production, editing of beta cells
开发用于分类、生产、编辑 β 细胞的平台
  • 批准号:
    10682155
  • 财政年份:
    2023
  • 资助金额:
    $ 28.63万
  • 项目类别:
Non-viral gene delivery platforms for the treatment of Usher Syndrome Type 2A.
用于治疗 2A 型亚瑟综合症的非病毒基因递送平台。
  • 批准号:
    10578428
  • 财政年份:
    2023
  • 资助金额:
    $ 28.63万
  • 项目类别:
Ceramide-Rich Platforms Functionalize Gemcitabine Uptake
富含神经酰胺的平台可功能化吉西他滨的摄取
  • 批准号:
    10323269
  • 财政年份:
    2021
  • 资助金额:
    $ 28.63万
  • 项目类别:
Ceramide-Rich Platforms Functionalize Gemcitabine Uptake
富含神经酰胺的平台可功能化吉西他滨的摄取
  • 批准号:
    10543438
  • 财政年份:
    2021
  • 资助金额:
    $ 28.63万
  • 项目类别:
Development of 3D Alveolar Tissue Models, CRISPR-editing and Microbiota-immune Response Assay Platforms for Deciphering Human Lung Immunity
开发 3D 肺泡组织模型、CRISPR 编辑和微生物免疫反应测定平台,以破译人类肺免疫
  • 批准号:
    10370727
  • 财政年份:
    2020
  • 资助金额:
    $ 28.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了