Collaborative Research: Brain mechanisms of rhythm perception: Testing the impact of the motor system on auditory perception
合作研究:节奏感知的大脑机制:测试运动系统对听觉感知的影响
基本信息
- 批准号:1460885
- 负责人:
- 金额:$ 36.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The perception of rhythmic patterns of events in time is central to our ability to find meaning in the sounds of language and music: the basis for much of human culture and communication. We do not passively receive temporal patterns, but actively engage with them by using a repeating 'pulse' or 'beat' to form an essential scaffold for our perception of time. This ability might be most obvious when expressed through dance, or simply tapping a foot to music, but it has deeper importance for how we comprehend sound even in the absence of movement. The scaffold provided by the beat cycle enables listeners to predict upcoming events, allowing more efficient encoding and learning of sensory patterns. How does this important perceptual mechanism work? New evidence suggests that perceiving patterns in sound doesn't depend only on the auditory system, but also involves activation of the motor system, even when the listener is not moving. This proposal tests the provocative and potentially transformative idea that motor planning activity is not only to help us move, but is also necessary for perception of patterns in the sounds we hear. This research has many potential societal benefits in both education and medicine. An understanding of the auditory-motor interactions underlying rhythm perception could explain a growing number of findings suggesting an important link between beat perception and language, including the development of reading in children, the perception of speech in noise, and attention, and may help drive improved educational interventions. The results could also provide a brain-based explanation for the growing use of rhythmic music in the treatment of movement disorders such as Parkinson's disease and possibly guide development of enhanced therapies and diagnostic tests. This proposal addresses a critical, and difficult, open question within auditory cognitive neuroscience: Does motor activity play a causal role in beat perception and if so, what is that role? Establishing this would be a transformative breakthrough in our understanding of the perception of time. While there is strong existing evidence that motor regions are active during beat perception, the dynamic functioning and interaction among parts of the cortical network supporting beat perception is not fully understood. In particular, a causal role of motor activity on auditory processing has not yet been demonstrated directly. This program of research directly examines whether motor planning regions influence processing in auditory cortex and whether a dynamic network is activated during beat perception. To achieve these objectives the investigators use two interlocking approaches: 1) Advanced quantitative methods of cortical source-resolved electroencephalographic (EEG) brain dynamics during beat perception tasks to identify regions in the brain whose activity patterns mirrors the endogenously perceived beat and to examine the directional flow of influence between these beat perception areas and other auditory processing areas; 2) Non-invasive transcranial magnetic stimulation (TMS) to transiently suppress and/or facilitate activity in beat perception areas.
对时间事件的节奏模式的感知对于我们在语言和音乐的声音中寻找意义的能力至关重要:这是人类文化和交流的基础。 我们不是被动地接收时间模式,而是通过使用重复的“脉冲”或“节拍”来主动参与它们,形成我们感知时间的重要支架。这种能力在通过舞蹈或简单地随着音乐轻拍脚来表达时可能最为明显,但它对于我们即使在没有运动的情况下如何理解声音也具有更深层的重要性。节拍周期提供的支架使听众能够预测即将发生的事件,从而更有效地编码和学习感官模式。这个重要的感知机制是如何运作的?新的证据表明,感知声音模式不仅取决于听觉系统,还涉及运动系统的激活,即使听者没有移动。该提案测试了一个具有挑衅性和潜在变革性的想法,即运动计划活动不仅可以帮助我们移动,而且对于感知我们听到的声音模式也是必要的。这项研究在教育和医学方面具有许多潜在的社会效益。了解节律知觉背后的听觉-运动相互作用可以解释越来越多的发现,这些发现表明节拍知觉和语言之间存在重要联系,包括儿童阅读的发展、噪音中言语的知觉和注意力,并且可能有助于驱动改进教育干预措施。研究结果还可以为越来越多地使用节奏音乐来治疗帕金森病等运动障碍提供基于大脑的解释,并可能指导增强疗法和诊断测试的开发。该提案解决了听觉认知神经科学中一个关键且困难的开放性问题:运动活动是否在节拍感知中发挥因果作用,如果是,那么该作用是什么?建立这一点将是我们对时间感知理解的革命性突破。虽然现有强有力的证据表明运动区域在节拍感知过程中是活跃的,但支持节拍感知的皮质网络各部分之间的动态功能和相互作用尚未完全了解。特别是,运动活动对听觉处理的因果作用尚未得到直接证明。该研究项目直接检查运动规划区域是否影响听觉皮层的处理以及节拍感知过程中动态网络是否被激活。为了实现这些目标,研究人员使用两种相互关联的方法:1)在节拍感知任务期间,使用皮层源分辨脑电图(EEG)大脑动力学的先进定量方法来识别大脑中其活动模式反映内源感知节拍的区域,并检查方向性节拍。这些节拍感知区域和其他听觉处理区域之间的影响流; 2) 非侵入性经颅磁刺激 (TMS),可暂时抑制和/或促进节拍感知区域的活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Iversen其他文献
大動脈疾患,末梢動脈疾患の最新トピックスー大動脈瘤に対する心臓リハビリテーション
主动脉疾病和外周动脉疾病的最新主题 - 主动脉瘤的心脏康复
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Kambara;Wanhee Cho;Hyeonseok Kim;Rikiya Oya;Yusuke Kitami;Makoto Kobayashi;Supat Saetia;Takahiro Kagawa;Hirokazu Tanaka;Makoto Miyakoshi;John Iversen;Scott Makeig;Makoto Sato;Natsue Yoshimura;中山敦子 - 通讯作者:
中山敦子
Juggling on the Moon: A VR Yystem for Complex Motor Skill Learning
月球杂耍:用于复杂运动技能学习的 VR 系统
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Kambara;Wanhee Cho;Hyeonseok Kim;Rikiya Oya;Yusuke Kitami;Makoto Kobayashi;Supat Saetia;Takahiro Kagawa;Hirokazu Tanaka;Makoto Miyakoshi;John Iversen;Scott Makeig;Makoto Sato;Natsue Yoshimura - 通讯作者:
Natsue Yoshimura
John Iversen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Iversen', 18)}}的其他基金
CRCNS US-Japan Research Proposal: A computational neuroscience approach to skill acquisition and transfer from visuo-haptic VR to the real-world
CRCNS 美日研究提案:一种计算神经科学方法,用于获取技能并将其从视觉触觉 VR 转移到现实世界
- 批准号:
2011716 - 财政年份:2020
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
US Trainee Travel Awards to attend the 2nd Timing Research Forum: Queretaro, Mexico - October 2019
美国实习生旅行奖将出席第二届计时研究论坛:墨西哥克雷塔罗 - 2019 年 10 月
- 批准号:
1941078 - 财政年份:2019
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Science of Learning goes global: International community-building among SL-CNs and Australian Science of Learning Research Centre
学习科学走向全球:SL-CN 和澳大利亚学习科学研究中心之间的国际社区建设
- 批准号:
1649938 - 财政年份:2016
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
SL-CN: Group Brain Dynamics in Learning Network
SL-CN:学习网络中的群体大脑动力学
- 批准号:
1540943 - 财政年份:2015
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
相似国自然基金
模块化自由装配微流控模型辅助蛋白冠介导脑靶向纳米胶束构建及机制研究
- 批准号:22378358
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于脑效应网络探讨老年肾虚耳聋的中枢机制及耳聋左慈丸干预的作用机制研究
- 批准号:82374528
- 批准年份:2023
- 资助金额:45 万元
- 项目类别:面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
- 批准号:62366028
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于多尺度多模态脑网络的阿尔茨海默症病理进程研究
- 批准号:62302044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant