Collaborative Research: Brain mechanisms of rhythm perception: Testing the impact of the motor system on auditory perception
合作研究:节奏感知的大脑机制:测试运动系统对听觉感知的影响
基本信息
- 批准号:1460885
- 负责人:
- 金额:$ 36.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The perception of rhythmic patterns of events in time is central to our ability to find meaning in the sounds of language and music: the basis for much of human culture and communication. We do not passively receive temporal patterns, but actively engage with them by using a repeating 'pulse' or 'beat' to form an essential scaffold for our perception of time. This ability might be most obvious when expressed through dance, or simply tapping a foot to music, but it has deeper importance for how we comprehend sound even in the absence of movement. The scaffold provided by the beat cycle enables listeners to predict upcoming events, allowing more efficient encoding and learning of sensory patterns. How does this important perceptual mechanism work? New evidence suggests that perceiving patterns in sound doesn't depend only on the auditory system, but also involves activation of the motor system, even when the listener is not moving. This proposal tests the provocative and potentially transformative idea that motor planning activity is not only to help us move, but is also necessary for perception of patterns in the sounds we hear. This research has many potential societal benefits in both education and medicine. An understanding of the auditory-motor interactions underlying rhythm perception could explain a growing number of findings suggesting an important link between beat perception and language, including the development of reading in children, the perception of speech in noise, and attention, and may help drive improved educational interventions. The results could also provide a brain-based explanation for the growing use of rhythmic music in the treatment of movement disorders such as Parkinson's disease and possibly guide development of enhanced therapies and diagnostic tests. This proposal addresses a critical, and difficult, open question within auditory cognitive neuroscience: Does motor activity play a causal role in beat perception and if so, what is that role? Establishing this would be a transformative breakthrough in our understanding of the perception of time. While there is strong existing evidence that motor regions are active during beat perception, the dynamic functioning and interaction among parts of the cortical network supporting beat perception is not fully understood. In particular, a causal role of motor activity on auditory processing has not yet been demonstrated directly. This program of research directly examines whether motor planning regions influence processing in auditory cortex and whether a dynamic network is activated during beat perception. To achieve these objectives the investigators use two interlocking approaches: 1) Advanced quantitative methods of cortical source-resolved electroencephalographic (EEG) brain dynamics during beat perception tasks to identify regions in the brain whose activity patterns mirrors the endogenously perceived beat and to examine the directional flow of influence between these beat perception areas and other auditory processing areas; 2) Non-invasive transcranial magnetic stimulation (TMS) to transiently suppress and/or facilitate activity in beat perception areas.
对时间上事件的节奏模式的感知是我们在语言和音乐中找到含义的能力至关重要的:大部分人类文化和交流的基础。 我们不会被动地接收时间模式,而是通过使用重复的“脉搏”或“ beat”来积极与之接触,以形成我们对时间的感知的必不可少的脚手架。通过舞蹈表达,这种能力可能最明显,或者简单地将脚敲向音乐,但是即使在没有运动的情况下,它也对我们如何理解声音具有更大的重要性。节拍周期提供的脚手架使听众能够预测即将发生的事件,从而可以更有效地编码和学习感觉模式。这种重要的感知机制如何起作用?新的证据表明,声音中的感知模式不仅取决于听觉系统,而且涉及电动机系统的激活,即使听众没有移动。该提案测试了挑衅性和潜在的变革性思想,即运动计划活动不仅是为了帮助我们移动,而且对于我们听到的声音中的模式感知也是必要的。这项研究在教育和医学方面具有许多潜在的社会利益。对节奏感知的基础听觉运动相互作用的理解可以解释越来越多的发现,暗示了节拍感知与语言之间的重要联系,包括儿童阅读的发展,对噪音中的语音感知和注意力,并可能有助于推动改善的教育干预措施。结果还可以提供基于大脑的解释,用于日益增长的节奏音乐在诸如帕金森氏病等运动障碍的治疗中,并可能指导增强疗法和诊断测试的发展。该提案解决了听觉认知神经科学中的一个关键,困难,开放的问题:运动活动在节拍感知中是否起因果作用,如果是,那是什么作用?在我们对时间的看法的理解中,建立这一点将是一个变革性的突破。尽管有强烈的现有证据表明运动区域在节拍感知期间处于活动状态,但尚不完全了解皮质网络支持节奏感知的部分动态功能和相互作用。特别是,尚未直接证明运动活动在听觉处理中的因果作用。该研究计划直接研究了运动计划区域是否影响听觉皮层的处理以及在节拍感知期间是否激活动态网络。为了实现这些目标,调查人员使用两种互锁方法:1)在节拍感知任务期间,皮质源分辨的脑电图(EEG)脑动力学的先进定量方法,以识别大脑中的活动模式的区域,其活动模式反映了内源性感知的BEAT,并检查了这些节拍感感受区域之间的方向流动区域,这些区域的方向流动的方向流动区域和其他其他听觉处理区域之间的方向流动。 2)非侵入性经颅磁刺激(TMS),以瞬时抑制和/或促进beat感知区域的活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Iversen其他文献
大動脈疾患,末梢動脈疾患の最新トピックスー大動脈瘤に対する心臓リハビリテーション
主动脉疾病和外周动脉疾病的最新主题 - 主动脉瘤的心脏康复
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Kambara;Wanhee Cho;Hyeonseok Kim;Rikiya Oya;Yusuke Kitami;Makoto Kobayashi;Supat Saetia;Takahiro Kagawa;Hirokazu Tanaka;Makoto Miyakoshi;John Iversen;Scott Makeig;Makoto Sato;Natsue Yoshimura;中山敦子 - 通讯作者:
中山敦子
Juggling on the Moon: A VR Yystem for Complex Motor Skill Learning
月球杂耍:用于复杂运动技能学习的 VR 系统
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hiroyuki Kambara;Wanhee Cho;Hyeonseok Kim;Rikiya Oya;Yusuke Kitami;Makoto Kobayashi;Supat Saetia;Takahiro Kagawa;Hirokazu Tanaka;Makoto Miyakoshi;John Iversen;Scott Makeig;Makoto Sato;Natsue Yoshimura - 通讯作者:
Natsue Yoshimura
John Iversen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Iversen', 18)}}的其他基金
CRCNS US-Japan Research Proposal: A computational neuroscience approach to skill acquisition and transfer from visuo-haptic VR to the real-world
CRCNS 美日研究提案:一种计算神经科学方法,用于获取技能并将其从视觉触觉 VR 转移到现实世界
- 批准号:
2011716 - 财政年份:2020
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
US Trainee Travel Awards to attend the 2nd Timing Research Forum: Queretaro, Mexico - October 2019
美国实习生旅行奖将出席第二届计时研究论坛:墨西哥克雷塔罗 - 2019 年 10 月
- 批准号:
1941078 - 财政年份:2019
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Science of Learning goes global: International community-building among SL-CNs and Australian Science of Learning Research Centre
学习科学走向全球:SL-CN 和澳大利亚学习科学研究中心之间的国际社区建设
- 批准号:
1649938 - 财政年份:2016
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
SL-CN: Group Brain Dynamics in Learning Network
SL-CN:学习网络中的群体大脑动力学
- 批准号:
1540943 - 财政年份:2015
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
相似国自然基金
人类与AI协作模式下的应急救援人员脑认知机制与认知增强研究
- 批准号:72374088
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
面向多主体人机协作场景的脑力负荷与脑间同步研究.
- 批准号:62376095
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多模态脑成像的汉语加工脑网络协作编码机制与言语解码研究
- 批准号:61906132
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
面向复杂事件分析的脑机模式协作循环神经网络研究
- 批准号:61806086
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
用于运动想象的脑机接口深度学习模型的高效算法研究
- 批准号:61701270
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant