CAREER: Many-body Ab initio Potentials and Quantum Dynamics Methods for "First Principles" Simulations in Solution: Hydration, Vibrational Spectroscopy, & Proton Transfer/Trans
职业:解决方案中“第一原理”模拟的多体从头计算势和量子动力学方法:水合、振动光谱、
基本信息
- 批准号:1453204
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Francesco Paesani of the University of California San Diego is supported by a CAREER award from the Chemical Theory, Models, and Computational Methods program in the Chemistry Division and the Division of Advanced Cyberinfrastructure to develop new theoretical and computational approaches for molecular-level computer simulations. Such simulations have become a powerful tool in chemistry, often providing fundamental insights into complex phenomena which are otherwise difficult to obtain. However, achieving the necessary accuracy for realistic and predictive simulations remains challenging. Paesani and his research group are meeting this challenge by combining a variety of approaches to generate very accurate models of many systems including ions in solution. The new methodology enables computer simulations of aqueous systems with unprecedented accuracy, providing information on fundamental molecular processes from ion hydration in bulk and at interfaces to proton transfer and transport in solution. The new methodology will be available to the community through its implementation in the open and free OpenMM software toolkit for molecular simulations. This "reference implementation" aims to provide the community with a completely open computational tool which may be used by other researchers interested in implementing it in their own simulation codes. In addition, this initial implementation is a starting point for future developments of unique software elements specifically designed for high-performance computing which will enable many-body simulations with unprecedented accuracy on both multicore CPU and GPU architectures.In parallel with the proposed research activities, Paesani has established an innovative education and outreach plan focusing on the development of an entry level course that introduces undergraduate students in their freshman and sophomore years to the use of computational methods in chemistry, as well as on mentoring activities specifically designed to promote study in the STEM disciplines among students from underprivileged and traditionally underrepresented groups through the development of a summer exchange program at UC-San Diego. Both the realism and the predicting power of a computer simulation strongly depend on the accuracy with which the molecular interactions and the overall system dynamics are described. Although ab initio methods can, in principle, enable the characterization of physicochemical processes without resorting to ad hoc simplifications, the associated computational cost effectively prevents the use of these methods to model realistic condensed-phase systems. Furthermore, a rigorous description of the actual molecular dynamics often requires a quantum-mechanical treatment of the nuclear motion, which further increases the computational cost associated with ab initio computer simulations. The methods developed by Paesani and coworkers seeks to overcome these limitations by combining machine-learning many-body potential energy surfaces derived entirely from highly-correlated electronic structure data with novel quantum-dynamical approaches based on path-integral molecular dynamics and centroid molecular dynamics. The efficient integration of these components pushes the boundaries of current molecular dynamics techniques and provides new opportunities for realistic simulations of condensed-phase systems in direct connection with corresponding spectroscopic measurements. Although much broader in scope, the initial application of the methodology is to modeling physicochemical processes in solution, with a specific focus on ion hydration, linear and nonlinear vibrational spectroscopy, and proton transfer/transport. The new methodology will be made available to the community through its implementation in the C++ "reference platform" of the open and free OpenMM software toolkit for molecular simulations. Specifically, implementation will consist of an independent plug-in to provide the community with a completely open implementation of these many-body potentials. This plug-in will include a complete suite of unit tests that cover all energy and force components as well as the inner functions of our many-body potentials. A number of test cases will also be made available for comparing output energies and forces obtained with OpenMM with the reference values calculated with the PI's in house implementation. To facilitate the use of the new many-body potentials, the plug-in will also offer a Python wrapper that will simplify both setting up and running many-body molecular simulations to the point where all simulation parameters will be entirely defined in an XML file. This plug-in will thus provide other researchers with a comprehensive implementation of our many-body potentials for aqueous simulations, which can be used as a reference for the implementation in other software. In addition, this reference implementation will serve as a starting point for future developments of unique software elements for the OpenMM toolkit, specifically designed for high-performance computing on both multicore CPU and GPU architectures. The development and application of the new simulation methodology will involve the training and education of undergraduate and graduate students as well as postdoctoral fellows, who will acquire a solid foundation in theoretical, physical, and computational chemistry. The interdisciplinary nature of the proposed project will provide an opportunity for students and postdocs to establish bridges and inter-connections between the fundamental laws of physical chemistry at a molecular level and the properties of condensed-phase systems. The possibility to work at the interface of different disciplines will prepare both students and postdocs for a wide range of scientific careers.
加州大学圣地亚哥分校的 Francesco Paesani 获得了化学系和高级网络基础设施系的化学理论、模型和计算方法项目的职业奖的支持,为分子级计算机模拟开发新的理论和计算方法。 这种模拟已成为化学领域的强大工具,通常可以提供对复杂现象的基本见解,而这些现象在其他情况下很难获得。然而,实现现实和预测模拟所需的准确性仍然具有挑战性。 Paesani 和他的研究小组正在通过结合多种方法来应对这一挑战,为许多系统(包括溶液中的离子)生成非常准确的模型。 新方法能够以前所未有的精度对水系统进行计算机模拟,提供从本体和界面处的离子水合到溶液中的质子转移和传输的基本分子过程的信息。新方法将通过在开放且免费的 OpenMM 分子模拟软件工具包中的实施向社区开放。 这个“参考实现”旨在为社区提供一个完全开放的计算工具,其他有兴趣在自己的模拟代码中实现它的研究人员可以使用该工具。此外,这一初步实施是未来开发专门为高性能计算设计的独特软件元素的起点,这将使多核 CPU 和 GPU 架构上的多体模拟达到前所未有的精度。与拟议的研究活动同时, Paesani 制定了一项创新的教育和推广计划,重点是开发入门级课程,向大一和大二的本科生介绍化学计算方法的使用,以及专门为促进化学领域的学习而设计的指导活动。 STEM 学科通过在加州大学圣地亚哥分校开展暑期交换项目,为来自贫困群体和传统上代表性不足群体的学生提供帮助。 计算机模拟的真实性和预测能力在很大程度上取决于描述分子相互作用和整个系统动力学的准确性。虽然原则上从头计算方法可以在不采取临时简化的情况下表征物理化学过程,但相关的计算成本有效地阻止了使用这些方法来模拟实际的凝聚相系统。此外,对实际分子动力学的严格描述通常需要对核运动进行量子力学处理,这进一步增加了与从头计算计算机模拟相关的计算成本。 Paesani 和同事开发的方法试图通过将完全源自高度相关电子结构数据的机器学习多体势能表面与基于路径积分分子动力学和质心分子动力学的新颖量子动力学方法相结合来克服这些限制。这些组件的有效集成突破了当前分子动力学技术的界限,并为与相应光谱测量直接相关的凝聚相系统的真实模拟提供了新的机会。尽管范围更广泛,但该方法的最初应用是模拟溶液中的物理化学过程,特别关注离子水合、线性和非线性振动光谱以及质子转移/传输。新方法将通过其在用于分子模拟的开放免费 OpenMM 软件工具包的 C++“参考平台”中的实现向社区提供。具体来说,实现将包括一个独立的插件,为社区提供这些多体潜力的完全开放的实现。该插件将包括一整套单元测试,涵盖所有能量和力分量以及多体势的内部功能。还将提供许多测试用例,用于将 OpenMM 获得的输出能量和力与 PI 内部实施计算的参考值进行比较。为了方便使用新的多体势,该插件还将提供一个 Python 包装器,该包装器将简化多体分子模拟的设置和运行,以便所有模拟参数都将在 XML 文件中完全定义。因此,该插件将为其他研究人员提供水模拟多体势的全面实现,可以作为其他软件中实现的参考。此外,该参考实现将作为 OpenMM 工具包独特软件元素未来开发的起点,专门为多核 CPU 和 GPU 架构上的高性能计算而设计。 新模拟方法的开发和应用将涉及本科生、研究生以及博士后的培训和教育,他们将在理论、物理和计算化学方面获得坚实的基础。该项目的跨学科性质将为学生和博士后提供一个机会,在分子水平上的物理化学基本定律和凝聚相系统的性质之间建立桥梁和相互联系。在不同学科交叉领域工作的可能性将为学生和博士后从事广泛的科学职业做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Paesani其他文献
Many-body potential for simulating the self-assembly of polymer-grafted nanoparticles in a polymer matrix
模拟聚合物基体中聚合物接枝纳米颗粒自组装的多体潜力
- DOI:
10.1038/s41524-023-01166-6 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:9.7
- 作者:
Yilong Zhou;S. Bore;Andrea R. Tao;Francesco Paesani;Gaurav Arya - 通讯作者:
Gaurav Arya
Monitoring water harvesting in metal–organic frameworks, one water molecule at a time
- DOI:
10.1039/d3sc06162k - 发表时间:
2024-03 - 期刊:
- 影响因子:8.4
- 作者:
Kelly M. Hunter;Francesco Paesani - 通讯作者:
Francesco Paesani
MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion
- DOI:
10.1039/c4ta06694d - 发表时间:
2015-01 - 期刊:
- 影响因子:11.9
- 作者:
JaeWook Shin;Min Kim;Jordi Cirera;Shawn Chen;Gregory J. Halder;Thomas A. Yersak;Francesco Paesani;Seth M. Cohen;Ying Shirley Meng - 通讯作者:
Ying Shirley Meng
Computational insights into the interaction of water with the UiO-66 metal–organic framework and its functionalized derivatives
- DOI:
10.1039/d3tc01313h - 发表时间:
2023-07 - 期刊:
- 影响因子:6.4
- 作者:
Jierui Zhang;Francesco Paesani;Martina Lessio - 通讯作者:
Martina Lessio
The effects of framework dynamics on the behavior of water adsorbed in the [Zn(l-L)(Cl)] and Co-MOF-74 metal–organic frameworks
- DOI:
10.1039/c5cp07681a - 发表时间:
2016-02 - 期刊:
- 影响因子:3.3
- 作者:
Zachary L. Terranova;Francesco Paesani - 通讯作者:
Francesco Paesani
Francesco Paesani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Paesani', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Frameworks: Data-Driven Software Infrastructure for Next-Generation Molecular Simulations
框架:下一代分子模拟的数据驱动软件基础设施
- 批准号:
2311260 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Disentangling Many-Body Effects and Coupling in the Vibrational Spectra of Aqueous Clusters
解开水团簇振动谱中的多体效应和耦合
- 批准号:
2102309 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Data-Driven Many-Body Models for Molecular Simulations of Ions in Water: From Ionic Clusters to Concentrated Electrolyte Solutions
用于水中离子分子模拟的数据驱动多体模型:从离子簇到浓缩电解质溶液
- 批准号:
1954895 - 财政年份:2020
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Molecular Characterization of Water Oxidation in Metal-Organic Frameworks through Computer Simulations
通过计算机模拟对金属有机框架中的水氧化进行分子表征
- 批准号:
1704063 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
SI2-SSE: Enabling Chemical Accuracy in Computer Simulations: An Integrated Software Platform for Many-Body Molecular Dynamics
SI2-SSE:实现计算机模拟中的化学准确性:多体分子动力学集成软件平台
- 批准号:
1642336 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Computer Modeling of Proton Conduction in Metal-Organic Frameworks
金属有机框架中质子传导的计算机建模
- 批准号:
1305101 - 财政年份:2013
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Molecular simulations of water uptake and nitrogen oxides reactions on aerosol surfaces
气溶胶表面吸水和氮氧化物反应的分子模拟
- 批准号:
1111364 - 财政年份:2011
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于序列深度显微图像的非织造滤材三维结构重建
- 批准号:61771123
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
- 批准号:
2337931 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
CAREER: Probing and Understanding Nonreciprocal and Topological Radiative Heat Transport in Many-Body Magnetized Systems
职业:探索和理解多体磁化系统中的不可逆和拓扑辐射热传输
- 批准号:
2238927 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
- 批准号:
2238836 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant