CAREER: Trace Formula and Geometric Analysis of Automorphic Forms
职业:自守形式的迹公式和几何分析
基本信息
- 批准号:1454893
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many aspects of this research project are intimately related to establishing instances of randomness in number theory. Number theory is among the oldest branches of mathematics; its applications to technology are prevalent and vital for communication systems, data processing, and computational algorithms. The goals of this project are driven by landmark problems on arithmetic families. Families arise when assembling and studying together objects that share common features. Families are often crucial even if one is a priori interested in a single object and thereby are central to the recent resolution of certain difficult algebraic and asymptotic questions. These goals of the project are complemented by concrete initiatives targeted at undergraduate and graduate education that are centered on developing effective writing and communication skills. In collaboration with the Institute for Writing at Cornell University, the PI will organize a monthly seminar on writing, regular writing groups, and an online wiki that will serve as a communication platform and access to resources for the general public. The PI will continue to mentor undergraduate research projects, disseminating knowledge and discoveries while promoting learning through the investigation of open problems.This research project aims to develop a quantitative theory of the asymptotics of special functions, such as characters of representations. The long-term goal is to solve problems on automorphic periods, subconvexity and non-vanishing of L-functions, and arithmetic statistics of families. The trace formula is a fundamental tool in number theory and the development of the Langlands program in particular. Even though there has been enormous progress, important questions remain open, notably analytic aspects that are critical for many applications. These questions are now ripe for investigation following the works of Arthur and others. An immediate outcome of this research is a Sato-Tate equi-distribution theorem for families of Maass forms on GL(n), resolving a long-standing problem. The understanding of the absolute convergence of the geometric side of the trace formula is currently one of the most urgent problems in the subject. A second focus is on trace characters, which are a central concern in representation theory, such as the local Langlands correspondence and functorial transfers. The PI will work on quantitative aspects that have seen little progress since the seminal work of Harish-Chandra. Related to this, the PI will continue work on Whittaker periods, notably towards a conjecture of Zuckerman on the asymptotic behavior at infinity. The proposed activity is to bring methods from analysis, geometry, representation theory, and mathematical physics in their full strength, notably symplectic geometry and integrable systems; an immediate goal is the systematic study of the quantitative aspects of coadjoint orbits.
该研究项目的许多方面与建立数量理论中的随机性实例密切相关。数字理论是数学最古老的分支之一。它对技术的应用对于通信系统,数据处理和计算算法至关重要。该项目的目标是由算术家庭中的地标问题驱动的。组装和研究共同特征的物体时会出现家庭。即使一个人对单个物体感兴趣,家庭也通常是至关重要的,因此对于最近解决某些困难的代数和渐近问题的解决至关重要。该项目的这些目标是针对本科和研究生教育的具体计划,这些计划集中在发展有效的写作和沟通能力上。与康奈尔大学的写作学院合作,PI将每月组织有关写作,常规写作小组和在线Wiki的每月研讨会,该研讨会将用作通信平台并为公众提供资源。 PI将继续指导本科研究项目,通过调查开放问题促进学习,在促进学习时传播知识和发现。本研究项目旨在开发有关特殊功能的渐近学的定量理论,例如表示形式的字符。长期的目标是解决自动型时期,l功能的次数和非逐渐播出的问题以及家庭的算术统计。 痕量公式是数字理论的基本工具,尤其是兰兰兹计划的发展。即使取得了巨大进展,重要的问题仍然是开放的,尤其是对于许多应用程序至关重要的分析方面。这些问题现在已经在亚瑟和其他人的作品之后成熟了调查。这项研究的直接结果是针对GL(n)上Maass形式家庭的Sato-Tate Equi-Distripution定理,解决了一个长期存在的问题。 当前,对痕量公式的几何侧的绝对收敛是当前最紧迫的问题之一。第二个重点是痕量字符,这是表示理论中的核心问题,例如本地兰兰兹信函和功能传输。自哈里什·坎德拉(Harish-Chandra)开创性工作以来,PI将致力于定量方面的进步。与此相关的是,PI将继续在Whittaker时期工作,特别是Zuckerman对Infinity的渐近行为的猜想。所提出的活动是将分析,几何形状,表示理论和数学物理学的方法全部带入其全部强度,尤其是象征性的几何形状和整合系统。一个直接的目标是对共同轨道的定量方面的系统研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Templier其他文献
Low-lying zeros of certain families of Artin L-functions
Artin L 函数某些族的低洼零点
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Shankar;A. Södergren;Nicolas Templier - 通讯作者:
Nicolas Templier
SATO–TATE EQUIDISTRIBUTION OF CERTAIN FAMILIES OF ARTIN $L$ -FUNCTIONS
某些 ARTIN $L$ 家族的 SATO-TATE 均衡分配 - 功能
- DOI:
10.1017/fms.2019.18 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Shankar;A. Södergren;Nicolas Templier - 通讯作者:
Nicolas Templier
Asymptotics and Local Constancy of Characters of p-adic Groups
p进群特征的渐近性和局部恒常性
- DOI:
10.1007/978-3-319-41424-9_7 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ju;S. Shin;Nicolas Templier - 通讯作者:
Nicolas Templier
Large values of modular forms
模块化形式的大值
- DOI:
10.4310/cjm.2014.v2.n1.a3 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nicolas Templier - 通讯作者:
Nicolas Templier
Families of L -Functions and Their Symmetry
L 函数族及其对称性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
P. Sarnak;S. Shin;Nicolas Templier - 通讯作者:
Nicolas Templier
Nicolas Templier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Templier', 18)}}的其他基金
Families of Automorphic Forms with Prescribed Local Behavior
具有规定局部行为的自守形式族
- 批准号:
2001071 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Upstate New York Number Theory Conference
纽约州北部数论会议
- 批准号:
1507085 - 财政年份:2015
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Analysis of Whittaker periods and applications to automorphic forms
惠特克周期分析及其在自守形式中的应用
- 批准号:
1512950 - 财政年份:2014
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
Analysis of Whittaker periods and applications to automorphic forms
惠特克周期分析及其在自守形式中的应用
- 批准号:
1200684 - 财政年份:2012
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
相似国自然基金
杏仁核催产素受体神经元抑制中脑社交挫败记忆痕迹神经元改善社交回避的环路机制
- 批准号:82301729
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复相干统计融合全局注意力模型的SAR微弱痕迹检测方法
- 批准号:62301403
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自适应场景认知的目标痕迹分析技术
- 批准号:62376282
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
丘脑束旁核至背内侧纹状体(Pf-DMS)痕迹环路介导可卡因成瘾及电针耳穴干预的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
引力痕迹效应及相关数学物理问题研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
- 批准号:
23K12951 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
- 批准号:
2132670 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Standard Grant