CAREER: Identifying the Micromechanisms Leading to Hydrogen-Induced Intergranular Fracture in Metals
职业:确定导致金属中氢致晶间断裂的微观机制
基本信息
- 批准号:1454072
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) Program project will identify the underlying deformation and failure mechanisms of nickel (Ni) and its alloys under coupled environmental and mechanical conditions. Nickel and nickel-based alloys are commonly used in many crucial service applications due to their high strength and fracture toughness. In many cases these materials are used in energy generating, conversion or storage systems. In such conditions a loss of toughness associated with exposure to hydrogen can occur. This award supports fundamental research on the effect of hydrogen on the deformation and fracture of metals, and will contribute to engineering practice via advances in the structural integrity of energy systems. The education and outreach tasks through this grant will contribute to efforts aiming to improve STEM achievement in Baltimore elementary public schools with a high minority student population. Practical engineering problems and solutions will be presented and discussed in the classroom with the goal to stimulate interest in engineering. Undergraduates from a local historically black college will obtain research internships allowing for active involvement in this CAREER research project. This will allow students to develop interest and foundations for careers in mechanics of materials. The primary research objectives of this CAREER project are to fundamentally identify the influence of H-diffusion on dislocation microstructure evolution, damage accumulation, and subsequent H-induced intergranular fracture of Ni crystals. We hypothesize that, unlike conventionally presumed, dislocation plasticity plays a major role in controlling material response and subsequent failure even in high-pressure H environments. We will perform unprecedented large scale 3D discrete dislocation dynamics (DDD) simulations coupled with finite element method to study dislocation evolution in H-charged single, bi, and poly-crystals. Details of the dislocation-H interactions, dislocation grain boundary interactions, and H pipe/bulk diffusion will be identified through molecular dynamics (MD) simulations, then hierarchically informed into DDD. In particular, this work will address two fundamental questions: (1) How does H influence dislocation multiplication/evolution? and (2) What is the role of H-diffusion on the evolution of the dislocation microstructure? The MD simulations will: (1) quantify H effects on the activation parameters of cross-slip; and (2) quantify H-diffusion coefficients and dislocation grain boundary interactions. Coupled H-diffusion/DDD simulations will be used to identify effects of H concentration and grain size on: (1) flow strength, and slip-morphology; and (2) dislocation evolution ahead of H-induced intergranular cracks. Simulations will be validated by comparisons with key experimental results from literature.
该教师早期职业发展(CAREER)计划项目将确定镍(Ni)及其合金在环境和机械条件耦合下的潜在变形和失效机制。镍和镍基合金由于具有高强度和断裂韧性,通常用于许多关键的服务应用。在许多情况下,这些材料用于能源生成、转换或存储系统。在这种情况下,可能会发生与暴露于氢气相关的韧性损失。该奖项支持氢对金属变形和断裂影响的基础研究,并将通过能源系统结构完整性的进步为工程实践做出贡献。通过这笔赠款进行的教育和推广任务将有助于提高少数族裔学生人数较多的巴尔的摩公立小学的 STEM 成绩。实际的工程问题和解决方案将在课堂上提出和讨论,目的是激发人们对工程的兴趣。来自当地历史悠久的黑人大学的本科生将获得研究实习机会,从而积极参与这一职业研究项目。这将使学生培养材料力学职业的兴趣并奠定基础。该CAREER项目的主要研究目标是从根本上确定H扩散对位错微观结构演化、损伤积累以及随后H诱导的镍晶体晶间断裂的影响。我们假设,与传统假设不同,位错塑性在控制材料响应和随后的失效方面发挥着重要作用,即使在高压 H 环境中也是如此。我们将进行前所未有的大规模 3D 离散位错动力学 (DDD) 模拟,并结合有限元方法来研究带氢单晶、双晶和多晶中的位错演化。位错-H 相互作用、位错晶界相互作用和 H 管/体扩散的详细信息将通过分子动力学 (MD) 模拟来确定,然后分层告知 DDD。特别是,这项工作将解决两个基本问题:(1)H如何影响位错倍增/演化? (2) H扩散对位错微观结构的演化有何作用? MD 模拟将: (1) 量化 H 对横向滑移激活参数的影响; (2) 量化氢扩散系数和位错晶界相互作用。耦合 H 扩散/DDD 模拟将用于确定 H 浓度和晶粒尺寸对以下方面的影响:(1) 流动强度和滑移形态; (2) H引起的晶间裂纹之前的位错演化。模拟将通过与文献中的关键实验结果进行比较来验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaafar El-Awady其他文献
Jaafar El-Awady的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaafar El-Awady', 18)}}的其他基金
From Limited Data to the Deformation Field in Metals: A Machine Learning Driven Approach
从有限数据到金属变形场:机器学习驱动的方法
- 批准号:
2225675 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Travel Grant: 10th International Conference on Multiscale Materials Modeling; Baltimore, Maryland; October 19-22, 2020
旅费资助:第十届多尺度材料建模国际会议;
- 批准号:
1937162 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Bottom-up fundamental approach for characterizing plasticity and deformation in BCC and FCC high entropy alloys
自下而上表征 BCC 和 FCC 高熵合金塑性和变形的基本方法
- 批准号:
1807708 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Quantifying the Thermo-Mechanical Response and Strain-Rate Effects in Magnesium Microcrystals
量化镁微晶的热机械响应和应变率效应
- 批准号:
1609533 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
藻絮团微观构象解析与水分赋存状态界定识别及脱水机制研究
- 批准号:22378316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
生物活性炭工艺关键微生物识别和过程控制的微观调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大流行病期间贸易冲击对女性劳动参与的因果效应及其微观机制识别:理论、应用与政策含义
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于原位电化学扫描技术识别亚氧化钛电生•OH的微观机制及废水处理应用
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
模式识别受体调控细胞死亡分子机制的微观时空动力学模型研究---动脉粥样硬化治疗中的应用
- 批准号:11901360
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
- 批准号:
DP240100230 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Identifying key fire drivers in Australia; biomass, climate or people
确定澳大利亚的主要火灾驱动因素;
- 批准号:
DE240100340 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Identifying the goals and strategies people use to make others feel worse
确定人们用来让别人感觉更糟的目标和策略
- 批准号:
FT230100401 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
ARC Future Fellowships