CAREER:Enabling transport across the blood-brain barrier by engineering thermodynamically favorable pathways
职业:通过设计热力学有利的途径实现跨越血脑屏障的运输
基本信息
- 批准号:1453312
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1453312PI: Shikha NangiaThe blood-brain barrier serves the critical role of allowing only certain types of molecules to enter the brain from the blood stream. This important capability protects the brain from exposure to harmful chemical compounds. However, it also prevents certain drugs from entering the brain to treat brain disorders or diseases such as Alzheimer's disease. Since the segment of the US population older than 65 is expected to increase by 50% by 2030, and the cost of care to treat patients with these kinds of brain diseases is billions of dollars per year, finding new ways to help drugs cross the blood-brain barrier would provide significant benefits to patients and the nation. Nevertheless, understanding how therapeutic drug molecules move or don't move across the barrier into the brain has remained elusive. The proposed research will combine existing theories in a new way to understand how this movement is controlled across the blood-brain barrier, and will use an extensive computational tool-kit to engineer favorable pathways to transcend it. The proposed project will provide new molecular-level strategies to deliver drug molecules to the brain, and characterize the thermodynamics and transport kinetics of the blood-brain barrier. The focus will be to elucidate the molecular structure of the tight junction using a combination of molecular docking, analysis tools, and molecular dynamics. Additionally, the thermodynamics of the transport process properties of ions, water, and small drug molecules will be computed. The computed transport rates will be combined with stochastic simulation algorithm simulations to compute effective transport properties of drug across the tight junction strands. The education plan integrates findings from the research objectives with active-learning pedagogies to more effectively teach undergraduate and graduate thermodynamics courses.
CBET-1453312PI:Shikha Nangiathe血脑屏障起着仅允许某些类型的分子从血流中进入大脑的关键作用。这种重要的能力可保护大脑免于暴露于有害化合物中。但是,它还阻止某些药物进入大脑以治疗脑部疾病或诸如阿尔茨海默氏病等疾病。由于预计到2030年的美国人口的细分市场预计将增加50%,而治疗此类脑部疾病的患者的护理费用为每年数十亿美元,因此寻找帮助跨越血脑屏障的药物的新方法将为患者和国家提供重大收益。 然而,了解治疗药物分子如何移动或不穿过障碍物进入大脑仍然难以捉摸。拟议的研究将以一种新的方式将现有理论结合在一起,以了解如何在血脑屏障中控制这种运动,并将使用广泛的计算工具套件来设计出良好的途径来超越它。拟议的项目将提供新的分子级策略,以向大脑传递药物分子,并表征血脑屏障的热力学和运输动力学。重点是使用分子对接,分析工具和分子动力学的组合来阐明紧密连接的分子结构。此外,将计算离子,水和小药物分子的传输过程特性的热力学。计算的运输速率将与随机模拟算法模拟结合使用,以计算在紧密连接链中药物的有效运输特性。该教育计划将研究目标与主动学习教学法结合起来,以更有效地教授本科和研究生热力学课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shikha Nangia其他文献
Protein assembly in crowded membranes: Generating potential energy landscapes
- DOI:
10.1016/j.bpj.2023.11.2886 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Shikha Nangia - 通讯作者:
Shikha Nangia
Characterizing the hydrophobicity of proteins to predict protein assembly
- DOI:
10.1016/j.bpj.2022.11.1118 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Jingjing Ji;Shikha Nangia - 通讯作者:
Shikha Nangia
Protein-protein interactions at the tight junctions interface
- DOI:
10.1016/j.bpj.2022.11.1686 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Shikha Nangia;Nandhini Rajagopal - 通讯作者:
Nandhini Rajagopal
Predicting hydration properties of proteins
- DOI:
10.1016/j.bpj.2022.11.2516 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Britnie Carpentier;Shikha Nangia - 通讯作者:
Shikha Nangia
Shikha Nangia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shikha Nangia', 18)}}的其他基金
Biophysical Effects of Reversible Lipid Modification of Integral Membrane Proteins
完整膜蛋白可逆脂质修饰的生物物理效应
- 批准号:
2221796 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Infection-Resisting Resorbable Scaffolds for Engineering Human Tissue
合作研究:GCR:用于工程人体组织的抗感染可吸收支架
- 批准号:
2218974 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
Enabling New Functionality, Transport Analysis, and Deep Learning in Organ-on-a-Chip Systems
在器官芯片系统中实现新功能、传输分析和深度学习
- 批准号:
RGPIN-2019-05885 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Enabling green ammonia as future transport fuel
使绿色氨成为未来的运输燃料
- 批准号:
EP/X001113/1 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Enabling Mass Spectrometry Analysis of the Sulfoproteome
实现磺化蛋白质组的质谱分析
- 批准号:
10322358 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别: