CAREER: Experimental Investigation For the Characterization of the Geophysical Response of Rock-Fluid Interactions

职业:岩石-流体相互作用地球物理响应表征的实验研究

基本信息

  • 批准号:
    1451345
  • 负责人:
  • 金额:
    $ 53.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-15 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This is a time when our nation must think strategically, and globally, about how to use the resources of our planet. An important task is to predict the changes that this use will cause, so we can act wisely while flourishing as a community. The mechanical and chemical interactions of fluids throughout the earth's crust are believed to drive many geological and anthropogenic processes, the ramifications of which raise major societal concerns, from contaminating ground and surface water to triggering seismic activity and deformation. Time-lapse monitoring with seismic methods is an effective approach to recognize such variations in physical properties in the ground. However, quantitative interpretation of such data is not reliable for predicting changes that result from complex, dynamic interactions of thermal, chemical, and mechanical processes due to lack of fundamental laboratory data. Current models for the seismic response to pore fluid changes stem from a purely mechanical approach, which is inadequate for predicting the effects of coupled physical and chemical alterations. This is a challenging problem, because of its complexity and multi-disciplinary nature. A major shift is required in the way experiments are conceived so to dynamically track changes both in the rock and the fluid, and how they feedback upon each other. To succeed students also need to be trained across multi-disciplines as well as the design and operation of laboratory instruments-this task can be a mission by itself. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. The objective of this project is thus twofold. It leverages research by integrating innovative experiments that simulate earth conditions and chemo-mechanical processes with a combination of measurements and computations on 3D printed models of CT-scanned rocks. The project also aims to broaden education opportunities through the creation of an online laboratory that can facilitate the process of learning experimental techniques and adapt its content to the high-tech student's lifestyle. The virtual laboratory reproduces in form and function the PI research laboratory at Stanford University through interactive, 3-D animated renderings of instruments used in a geophysics laboratory that students can virtually assemble and operate. The objective is to build the necessary infrastructure allowing students to appreciate more easily the dual functions of laboratory systems: learning what these systems do and how they work, and actually using them for future research endeavors. The project will provide fertile ground for a series of new technologies and cyber capabilities both in classes and research and help turn the complexity of laboratory work into dexterity, engagement, and expanded learning opportunities to anyone, anywhere. The overall goal is to make it possible to teach introductory laboratory classes in geoscience facilities lacking research laboratories and raise awareness of professional practices among early-stage or inexperienced students so that they can hit the ground running and efficiently take on the challenge of becoming future geoscientists.Whether the goal is fluid disposal or storage, the thermal and chemical stimulation of reservoirs, or healing or weakening processes across geothermal and seismogenic areas, real-time geophysical monitoring is emerging as a way to rapidly control processes at depth and turn data observations into decisions. The proposed research aims to improve our fundamental understanding of how to decipher changes in the earth's crust due to fluid movement and rock-fluid interactions using remote geophysical monitoring methods. Currently, quantitative interpretation of 4-D seismic data is not successful for predicting the behavior of dynamic systems underlying thermo-chemo-mechanical processes, because we lack fundamental laboratory data. Conventional laboratory experiments as well as models for seismic signatures of pore fluid changes stem from a purely mechanical approach, which is inadequate for predicting the effects of reactive transport fluids on the microstructural properties of the rock skeleton-the pore space of the rock deforms chemo-mechanically while the fluid reacts and flows through a deforming pore space. The innovative aspect of this proposal is to interlace the rock elastic properties with deformation and reactive transport flow through basic-science experimentation and multi-scale imaging. The proposed research will use laboratory experiments and time-lapse, multi-scale imaging to track both geochemical (fluid chemistry and flow, mass balance, pH) and physical parameters (transport and elastic properties, pressure buildup, dissolution-driven strain) in rocks during chemo-mechanical processes. This research will advance our knowledge by (a) measuring chemical and physical quantities continuously and simultaneously to truly couple cause and effect in the time domain and (b) complementing the experimental measurements with time-lapse, multi-scale imaging techniques to correlate the trends in the geophysical observables with the spatial changes occurring in the rock. The education component of the project leverages a current PI project to create a virtual laboratory through interactive, 3-D animated renderings of rock-physics instruments for the geophysics community. Complementing time-consuming high-pressure/high-temperature experiments and time-lapse imaging with the 3D printing of actual rock models is a way to open research to innovative tools, and possibly, to new learning perspectives through the skills of the high-tech students of this nation and abroad.
这是我们国家必须在战略上和全球思考如何利用我们地球的资源的时候。一个重要的任务是预测这种使用将造成的变化,以便我们可以在作为一个社区繁荣时明智地行动。据信,整个地壳中流体的机械和化学相互作用都可以驱动许多地质和人为过程,从污染的地面和地表水到触发地震活性和变形,产生的后果引起了主要的社会问题。地震方法的延时监测是一种有效的方法,可以识别地面物理特性的这种变化。但是,由于缺乏基本实验室数据而导致的热,化学和机械过程的复杂,动态相互作用导致的变化,对此类数据的定量解释并不可靠。当前对孔隙流体变化的地震反应的模型源于一种纯机械方法,这种方法不足以预测耦合的物理和化学改变的影响。这是一个具有挑战性的问题,因为它的复杂性和多学科性质。需要在实验的方式中进行重大转移,以便动态跟踪岩石和流体中的变化,以及它们如何相互反馈。为了成功,还需要对学生进行跨多学科的培训以及实验室工具的设计和运作 - 这项任务本身就是一个任务。实验研究是科学询问的必不可少的要素,必须在当代和后代的科学家做出决策的方式中发挥核心作用。因此,该项目的目的是双重的。它通过整合创新的实验来利用研究,以模拟地球条件和化学机械过程,并在3D印刷模型的CT扫描岩石模型上进行测量和计算的组合。该项目还旨在通过创建一个在线实验室来扩大教育机会,该实验室可以促进学习实验技术的过程并将其内容调整到高科技学生的生活方式中。虚拟实验室通过互动,3-D动画渲染的地球物理实验室中使用的互动,3-D动画渲染,在斯坦福大学的PI研究实验室中繁殖,学生可以实际上可以组装和操作。目的是建立必要的基础设施,使学生更容易欣赏实验室系统的双重功能:学习这些系统的工作以及它们的工作方式,并实际使用它们来实现未来的研究努力。该项目将为课堂和研究中的一系列新技术和网络能力提供肥沃的基础,并帮助将实验室工作的复杂性转化为灵巧,参与度,并将学习机会扩大到任何地方的任何人。总体目标是使在地球科学设施中教授入门实验室课程缺乏研究实验室,并提高对早期或经验不足的学生之间对专业实践的认识,以便他们能够达到扎根并有效地面临未来地球科学家的挑战。无论目标是流动或储存的过程,还是较弱的过程,或者越来越弱化,或者越来越弱,或者越来越多地刺激了储藏剂,越来越多的储藏剂刺激了侵害,越来越多地刺激了储藏剂,探索了治疗方案,探索术语,探索术语,探索术语,探索术语,探索术语,骨化的刺激性,易于探索。实时地球物理监测正在出现,是一种在深度快速控制过程并将数据观察变成决策的方式。拟议的研究旨在提高我们对如何使用远程地球物理监测方法的流体运动和岩石流体相互作用,对如何破译地壳破译的基本理解。当前,4-D地震数据的定量解释无法成功预测热化学机械过程的动态系统的行为,因为我们缺乏基本的实验室数据。常规的实验室实验以及孔隙流体变化的地震特征的模型源于一种纯机械方法,这是不足以预测反应性转运液对岩石骨架的微结构特性的影响 - 岩石孔的孔隙空间,岩石的化学机械性变形,而流体反应和流通过凹陷的孔隙空间,而流体反应和流动。该提案的创新方面是通过基本科学实验和多尺度成像将岩石弹性特性与岩石弹性特性相互关系。拟议的研究将使用实验室实验和延时,多尺度成像来跟踪化学机械过程期间岩石中岩石中的地球化学(流体化学和流量,质量平衡,pH)和物理参数(运输和弹性特性,压力积累,溶解驱动的菌株)。这项研究将通过(a)连续且同时测量化学和物理量来真正促进我们的知识,以真正伴随时域中的引起和作用,以及(b)补充实验测量与延时,多尺度成像技术相关联,以将地球物理观察物的趋势与岩石中的空间变化相关联。该项目的教育部分利用当前的PI项目通过为地球物理学社区的摇滚物质仪器进行互动的3-D动画渲染来创建虚拟实验室。通过3D打印实际的摇滚模型,可以通过这个国家和国外的高科技学生的技能来补充耗时的高压/高温实验和延时成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiziana Vanorio其他文献

Tiziana Vanorio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiziana Vanorio', 18)}}的其他基金

Physical and Mechanical Response of the Cementation of Aluminosilicate Seals
硅铝酸盐密封胶结的物理和机械响应
  • 批准号:
    2149529
  • 财政年份:
    2022
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Standard Grant
Collaborative Research: GP-IN: Connected to Earth: Cross-Cultural Knowledge Exchange for Advancing Earth Science Learning
合作研究:GP-IN:连接地球:跨文化知识交流促进地球科学学习
  • 批准号:
    2119008
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Standard Grant

相似国自然基金

农作物保险对农户灌溉行为的影响: 基于我国黄淮海地区的一组调查和实验数据
  • 批准号:
    72303232
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络与农村儿童非认知能力发展:基于整体网调查与干预实验的研究
  • 批准号:
    72203240
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
社会网络与农村儿童非认知能力发展:基于整体网调查与干预实验的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
竹林土壤退化分布特征、防治驱动及政策响应——基于天目山区农户层面实验与调查
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于社区实验的城市生活垃圾按量计费意愿调查、行为评价与模式优选研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Function and regulation of heterotrimeric G proteins in ciliogenesis and pathobiology of neurodevelopmental disorders
异源三聚体 G 蛋白在纤毛发生和神经发育障碍病理学中的功能和调节
  • 批准号:
    10651317
  • 财政年份:
    2023
  • 资助金额:
    $ 53.24万
  • 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
  • 批准号:
    10643012
  • 财政年份:
    2023
  • 资助金额:
    $ 53.24万
  • 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
  • 批准号:
    10751722
  • 财政年份:
    2023
  • 资助金额:
    $ 53.24万
  • 项目类别:
Center for TMD IMPACT
TMD影响中心
  • 批准号:
    10827805
  • 财政年份:
    2023
  • 资助金额:
    $ 53.24万
  • 项目类别:
Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
  • 批准号:
    10890903
  • 财政年份:
    2023
  • 资助金额:
    $ 53.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了