CAREER: Experimental Investigation For the Characterization of the Geophysical Response of Rock-Fluid Interactions
职业:岩石-流体相互作用地球物理响应表征的实验研究
基本信息
- 批准号:1451345
- 负责人:
- 金额:$ 53.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-15 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a time when our nation must think strategically, and globally, about how to use the resources of our planet. An important task is to predict the changes that this use will cause, so we can act wisely while flourishing as a community. The mechanical and chemical interactions of fluids throughout the earth's crust are believed to drive many geological and anthropogenic processes, the ramifications of which raise major societal concerns, from contaminating ground and surface water to triggering seismic activity and deformation. Time-lapse monitoring with seismic methods is an effective approach to recognize such variations in physical properties in the ground. However, quantitative interpretation of such data is not reliable for predicting changes that result from complex, dynamic interactions of thermal, chemical, and mechanical processes due to lack of fundamental laboratory data. Current models for the seismic response to pore fluid changes stem from a purely mechanical approach, which is inadequate for predicting the effects of coupled physical and chemical alterations. This is a challenging problem, because of its complexity and multi-disciplinary nature. A major shift is required in the way experiments are conceived so to dynamically track changes both in the rock and the fluid, and how they feedback upon each other. To succeed students also need to be trained across multi-disciplines as well as the design and operation of laboratory instruments-this task can be a mission by itself. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. The objective of this project is thus twofold. It leverages research by integrating innovative experiments that simulate earth conditions and chemo-mechanical processes with a combination of measurements and computations on 3D printed models of CT-scanned rocks. The project also aims to broaden education opportunities through the creation of an online laboratory that can facilitate the process of learning experimental techniques and adapt its content to the high-tech student's lifestyle. The virtual laboratory reproduces in form and function the PI research laboratory at Stanford University through interactive, 3-D animated renderings of instruments used in a geophysics laboratory that students can virtually assemble and operate. The objective is to build the necessary infrastructure allowing students to appreciate more easily the dual functions of laboratory systems: learning what these systems do and how they work, and actually using them for future research endeavors. The project will provide fertile ground for a series of new technologies and cyber capabilities both in classes and research and help turn the complexity of laboratory work into dexterity, engagement, and expanded learning opportunities to anyone, anywhere. The overall goal is to make it possible to teach introductory laboratory classes in geoscience facilities lacking research laboratories and raise awareness of professional practices among early-stage or inexperienced students so that they can hit the ground running and efficiently take on the challenge of becoming future geoscientists.Whether the goal is fluid disposal or storage, the thermal and chemical stimulation of reservoirs, or healing or weakening processes across geothermal and seismogenic areas, real-time geophysical monitoring is emerging as a way to rapidly control processes at depth and turn data observations into decisions. The proposed research aims to improve our fundamental understanding of how to decipher changes in the earth's crust due to fluid movement and rock-fluid interactions using remote geophysical monitoring methods. Currently, quantitative interpretation of 4-D seismic data is not successful for predicting the behavior of dynamic systems underlying thermo-chemo-mechanical processes, because we lack fundamental laboratory data. Conventional laboratory experiments as well as models for seismic signatures of pore fluid changes stem from a purely mechanical approach, which is inadequate for predicting the effects of reactive transport fluids on the microstructural properties of the rock skeleton-the pore space of the rock deforms chemo-mechanically while the fluid reacts and flows through a deforming pore space. The innovative aspect of this proposal is to interlace the rock elastic properties with deformation and reactive transport flow through basic-science experimentation and multi-scale imaging. The proposed research will use laboratory experiments and time-lapse, multi-scale imaging to track both geochemical (fluid chemistry and flow, mass balance, pH) and physical parameters (transport and elastic properties, pressure buildup, dissolution-driven strain) in rocks during chemo-mechanical processes. This research will advance our knowledge by (a) measuring chemical and physical quantities continuously and simultaneously to truly couple cause and effect in the time domain and (b) complementing the experimental measurements with time-lapse, multi-scale imaging techniques to correlate the trends in the geophysical observables with the spatial changes occurring in the rock. The education component of the project leverages a current PI project to create a virtual laboratory through interactive, 3-D animated renderings of rock-physics instruments for the geophysics community. Complementing time-consuming high-pressure/high-temperature experiments and time-lapse imaging with the 3D printing of actual rock models is a way to open research to innovative tools, and possibly, to new learning perspectives through the skills of the high-tech students of this nation and abroad.
这是我们国家必须在全球范围内战略性地思考如何利用地球资源的时刻。一项重要的任务是预测这种使用将导致的变化,以便我们能够在社区蓬勃发展的同时采取明智的行动。地壳中流体的机械和化学相互作用被认为驱动了许多地质和人为过程,其后果引起了主要的社会关注,从污染地下水和地表水到引发地震活动和变形。使用地震方法进行时移监测是识别地下物理特性变化的有效方法。然而,由于缺乏基本的实验室数据,对此类数据的定量解释对于预测热、化学和机械过程的复杂动态相互作用所导致的变化并不可靠。当前对孔隙流体变化的地震响应模型源于纯机械方法,不足以预测耦合物理和化学变化的影响。这是一个具有挑战性的问题,因为它的复杂性和多学科性质。实验的构思方式需要发生重大转变,以便动态跟踪岩石和流体的变化,以及它们如何相互反馈。为了取得成功,学生还需要接受跨学科以及实验室仪器的设计和操作的培训——这项任务本身就是一项使命。实验研究是科学探究不可或缺的要素,必须在当代和未来几代科学家的决策方式中发挥核心作用。因此,该项目的目标是双重的。它通过将模拟地球条件和化学机械过程的创新实验与 CT 扫描岩石 3D 打印模型的测量和计算相结合来利用研究。该项目还旨在通过创建一个在线实验室来扩大教育机会,该实验室可以促进学习实验技术的过程并使其内容适应高科技学生的生活方式。该虚拟实验室通过地球物理实验室中使用的仪器的交互式 3D 动画渲染,再现了斯坦福大学 PI 研究实验室的形式和功能,学生可以虚拟组装和操作这些仪器。目标是建立必要的基础设施,让学生更容易地理解实验室系统的双重功能:了解这些系统的用途和工作原理,并实际将它们用于未来的研究工作。该项目将为课堂和研究中的一系列新技术和网络能力提供肥沃的土壤,并帮助将实验室工作的复杂性转化为灵活性、参与度,并为任何人、任何地方提供更多的学习机会。总体目标是能够在缺乏研究实验室的地球科学设施中教授入门实验室课程,并提高处于早期阶段或缺乏经验的学生的专业实践意识,以便他们能够立即开始并有效地应对成为未来地球科学家的挑战无论目标是流体处理或储存、储层的热和化学刺激,还是地热和地震区域的愈合或弱化过程,实时地球物理监测正在成为一种快速控制深度过程和转换数据的方法观察转化为决策。拟议的研究旨在提高我们对如何使用远程地球物理监测方法破译由于流体运动和岩石-流体相互作用而引起的地壳变化的基本理解。目前,由于我们缺乏基本的实验室数据,4 维地震数据的定量解释无法成功预测热化学机械过程的动态系统的行为。传统的实验室实验以及孔隙流体变化的地震特征模型源于纯机械方法,不足以预测反应性输运流体对岩石骨架微观结构特性(岩石孔隙空间发生化学变形)的影响。当流体发生反应并流过变形的孔隙空间时,会产生机械作用。该提案的创新之处在于通过基础科学实验和多尺度成像将岩石弹性特性与变形和反应输运流结合起来。拟议的研究将使用实验室实验和延时、多尺度成像来跟踪岩石中的地球化学(流体化学和流动、质量平衡、pH)和物理参数(传输和弹性特性、压力积聚、溶解驱动应变)在化学机械过程中。这项研究将通过以下方式推进我们的知识:(a)连续、同时测量化学和物理量,以真正耦合时域中的因果关系;(b)用延时、多尺度成像技术补充实验测量,以关联趋势地球物理可观测值与岩石中发生的空间变化。该项目的教育部分利用当前的 PI 项目,通过岩石物理仪器的交互式 3D 动画渲染为地球物理学界创建一个虚拟实验室。通过实际岩石模型的 3D 打印来补充耗时的高压/高温实验和延时成像,是一种向创新工具开放研究的方法,并且可能通过高科技技能开启新的学习视角本民族和国外的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tiziana Vanorio其他文献
Tiziana Vanorio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tiziana Vanorio', 18)}}的其他基金
Physical and Mechanical Response of the Cementation of Aluminosilicate Seals
硅铝酸盐密封胶结的物理和机械响应
- 批准号:
2149529 - 财政年份:2022
- 资助金额:
$ 53.24万 - 项目类别:
Standard Grant
Collaborative Research: GP-IN: Connected to Earth: Cross-Cultural Knowledge Exchange for Advancing Earth Science Learning
合作研究:GP-IN:连接地球:跨文化知识交流促进地球科学学习
- 批准号:
2119008 - 财政年份:2021
- 资助金额:
$ 53.24万 - 项目类别:
Standard Grant
相似国自然基金
PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
- 批准号:82301240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LL-37基于线粒体动力学和代谢重编程调节小胶质细胞极化改善实验性自身免疫性脑脊髓炎的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:35 万元
- 项目类别:地区科学基金项目
基于空间转录组技术筛选皮肤损伤时间特异性生物学指标及构建智能化损伤时间准确推断模型的实验性研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Function and regulation of heterotrimeric G proteins in ciliogenesis and pathobiology of neurodevelopmental disorders
异源三聚体 G 蛋白在纤毛发生和神经发育障碍病理学中的功能和调节
- 批准号:
10651317 - 财政年份:2023
- 资助金额:
$ 53.24万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 53.24万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 53.24万 - 项目类别:
Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
- 批准号:
10890903 - 财政年份:2023
- 资助金额:
$ 53.24万 - 项目类别: