EAGER: A Novel Algorithmic Framework for Discovering Subnetworks from Big Biological Data
EAGER:一种从生物大数据中发现子网络的新颖算法框架
基本信息
- 批准号:1451316
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the commonly pursued objectives in big data analytics is to find interesting patterns from data. When the data is big and collected from an ensemble of underlying networks, such as molecular profiling data, inferring molecular subnetworks emerged as a promising solution to knowledge discovery from biological big data. A main barrier impeding the discovery is how to effectively use the massive and heterogeneous information from the data, e.g., how to integrate information from rows and columns of the data matrix to efficiently explore the complex space of possible subnetworks. A recent line of research (by the PI and others) has resulted in new algorithms being introduced to this area. Unfortunately, most of these algorithms are neither specifically designed for nor work well with biological big data. The main goal of this project is to develop tailor-made algorithms and software tools to obtain better discovery of subnetworks from ever-increasing biological big data. The broader significance and importance of this project fall into three main areas. First, the subnet algorithms and software tools developed in this proposal will have broad applicability for many scientific domains wherein subnetwork structures are usually desired; this encompasses disciplines ranging from biological, computational, medical and social sciences. The creation of an efficient and user-friendly software toolbox would further provide rich resources for training and educating students in these scientific domains, thereby helping to ensure national academic competitiveness. Second, the regularly scheduled outreach activities will provide an innovative learning model for educating students of all levels and the community at large. Finally, the under-represented groups, such as female and minority students, will be involved through targeted recruiting and information dissemination.Technically, a novel algorithmic framework, i.e., subnet, will be developed and implemented to discover subnetworks jointly from molecule abundance values and co-regulated molecule sets extracted from the same biological big data. The former correspond to the rows and the latter correspond to the column of the data matrix. Previous research has focused on either columns or rows but not on both simultaneously. A novel multi-criteria score-and-search paradigm will be introduced and a novel subnet algorithm will be developed and implemented to efficiently and reliably extract underlying subnetworks from biological big data. These techniques are transformative in that they are applicable to many other scientific areas where big data are "emitted" by the underlying networks. The algorithms and tools will be systematically evaluated on simulation data sets using standard measures.
大数据分析中通常追求的目标之一是从数据中找到有趣的模式。当数据很大并从基础网络的集合(例如分子分析数据)中收集时,推断出分子子网作为从生物学大数据中发现知识发现的有希望的解决方案。阻碍发现的主要障碍是如何有效地使用数据中的大量和异质信息,例如,如何整合来自数据矩阵的行和列的信息以有效地探索可能的子网的复杂空间。最近的一项研究(PI和其他研究)导致将新算法引入该领域。不幸的是,这些算法中的大多数既不专门为生物大数据设计,也不是很好。该项目的主要目标是开发量身定制的算法和软件工具,以从不断增加的生物学大数据中更好地发现子网。该项目的更广泛的意义和重要性属于三个主要领域。首先,本提案中开发的子网算法和软件工具将对许多科学领域具有广泛的适用性,其中通常需要子网结构;这包括从生物,计算,医学和社会科学的学科。创建高效且用户友好的软件工具箱将进一步为这些科学领域的学生提供丰富的资源,从而帮助确保国家的学术竞争力。其次,定期安排的外展活动将为各个层次和整个社区的学生提供创新的学习模型。最后,将通过有针对性的招聘和信息传播等代表性不足的群体,例如女性和少数族裔学生。技术上,将开发并实施一种新颖的算法框架,即子网,以发现从分子丰富度值和共同调控的分子集中摘录的基因networks共同发现子网。前者对应于行,后者对应于数据矩阵的列。先前的研究已重点放在列或行上,但并非同时介绍两者。将引入一种新颖的多标准评分和搜索范式,并将开发和实施一种新型的子网算法,以从生物大数据中有效,可靠地提取基础。这些技术具有变革性,因为它们适用于许多其他科学领域,这些科学领域被基础网络“散发”。该算法和工具将在模拟数据集上使用标准措施进行系统评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongxiao Zhu其他文献
"It's Not What We Were Trying to Get At, but I Think Maybe It Should Be": Learning How to Do Trauma-Informed Design with a Data Donation Platform for Online Dating Sexual Violence
“这不是我们想要达到的目标,但我认为也许应该如此”:学习如何利用在线约会性暴力的数据捐赠平台进行创伤知情设计
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wenqi Zheng;Emma Walquist;Isha Datey;Xiangyu Zhou;Kelly Berishaj;Melissa Mcdonald;Michele Parkhill;Dongxiao Zhu;Douglas Zytko - 通讯作者:
Douglas Zytko
MFABA: A More Faithful and Accelerated Boundary-based Attribution Method for Deep Neural Networks
MFABA:一种更忠实、更加速的深度神经网络基于边界的归因方法
- DOI:
10.48550/arxiv.2312.13630 - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
Zhiyu Zhu;Huaming Chen;Jiayu Zhang;Xinyi Wang;Zhibo Jin;Minhui Xue;Dongxiao Zhu;Kim - 通讯作者:
Kim
Towards Trauma-Informed Data Donation of Sexual Experience in Online Dating to Improve Sexual Risk Detection AI
致力于在线约会中性经历的创伤知情数据捐赠,以改进性风险检测人工智能
- DOI:
10.1145/3586182.3616689 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wenqi Zheng;Emma Walquist;Isha Datey;Xiangyu Zhou;Kelly Berishaj;Melissa Mcdonald;Michele Parkhill;Dongxiao Zhu;Douglas Zytko - 通讯作者:
Douglas Zytko
Benchmark and Neural Architecture for Conversational Entity Retrieval from a Knowledge Graph
从知识图进行会话实体检索的基准和神经架构
- DOI:
10.1145/3589334.3645676 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mona Zamiri;Yao Qiang;Fedor Nikolaev;Dongxiao Zhu;Alexander Kotov - 通讯作者:
Alexander Kotov
Mechanical evolution of metastatic cancer cells in three-dimensional microenvironment
三维微环境中转移癌细胞的机械演化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Karlin Hilai;Daniil Grubich;Marcus Akrawi;Hui Zhu;Razanne Zaghloul;Chenjun Shi;Man Do;Dongxiao Zhu;Jitao Zhang - 通讯作者:
Jitao Zhang
Dongxiao Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongxiao Zhu', 18)}}的其他基金
NSF Convergence Accelerator Track H: Leveraging Human-Centered AI Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment for Persons with Disabilities
NSF 融合加速器轨道 H:利用以人为本的人工智能微交通改善残疾人住房和就业之间的时空不匹配
- 批准号:
2235225 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
- 批准号:
2211897 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Leveraging AI-assist Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment
SCC-CIVIC-PG Track A:利用人工智能辅助微交通改善住房和就业之间的时空错配
- 批准号:
2043611 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:32171163
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别: