EAGER: Collaborative Research: A Computational Model for Evaluating the Quality of Citizen Science Contributions

EAGER:协作研究:评估公民科学贡献质量的计算模型

基本信息

  • 批准号:
    1451079
  • 负责人:
  • 金额:
    $ 9.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Citizen science is a form of research collaboration that involves members of the public in scientific projects, bringing multiple voices and ideas to problem solving and community participation. Citizen science can be powerful because while specific individuals may lack formal expertise and be limited in their ability to contribute high-quality data and new directions, a crowd of individuals may collectively possess the expertise and creativity necessary for identifying and solving difficult problems. However, a major concern for collecting scientific data from the crowd is the varied quality of the contributed data and their relevance to scientific hypotheses. The PIs will explore the potential for deriving metrics from research on computational creativity to automatically assess the quality of citizen science data as a complement to existing research on human assessment of data quality. The project will also explore how the automated assessment of quality can be incorporated into an agent that makes suggestions to individuals in the crowd about the quality of their data, resulting in a prototype for a computational agent that measures the novelty and value of a cizen science contribution. This project will inform future research in computational agents that learn from and contribute to the crowd in order to address challenges associated with the quality of the data and ideas from crowdsourcing in citizen science. More specifically, the project includes a) development of a model of citizen-science-data quality based on the notion that good contributions are not just reliable and accurate but also novel and surprising; b) an evaluation of the model against citizen-science data that has been labeled by humans for quality; and c) initial studies of the effect of computational quality feedback on the behavior and perception of members of the crowd. Extending quality assessment to include creativity and being able to make such assessments automatically is potentially tranformative for citizen science projects. The PIs will demonstrate their agent-based model of quality in citizen science projects including their own NatureNet project, which involves crowd participants in data collection in nature preserves and also in the design of scientific challenges and interaction experience that facilitate data collection.
公民科学是一种研究合作形式,让公众参与科学项目,为问题解决和社区参与带来多种声音和想法。公民科学之所以强大,是因为虽然特定的个人可能缺乏正式的专业知识,并且贡献高质量数据和新方向的能力受到限制,但一群人可能集体拥有识别和解决难题所需的专业知识和创造力。然而,从人群中收集科学数据的一个主要问题是所提供数据的不同质量及其与科学假设的相关性。 PI 将探索从计算创造力研究中导出指标的潜力,以自动评估公民科学数据的质量,作为对现有数据质量人类评估研究的补充。该项目还将探索如何将自动质量评估纳入到一个代理中,该代理向人群中的个人提供有关数据质量的建议,从而产生一个计算代理的原型,用于衡量公民科学的新颖性和价值贡献。该项目将为计算代理的未来研究提供信息,这些计算代理向人群学习并为人群做出贡献,以解决与公民科学众包数据和想法质量相关的挑战。更具体地说,该项目包括:a) 开发公民科学数据质量模型,其理念是良好的贡献不仅可靠、准确,而且新颖、令人惊讶; b) 根据人类已标记质量的公民科学数据对模型进行评估; c) 计算质量反馈对群体成员的行为和感知的影响的初步研究。将质量评估扩展到包括创造力并能够自动进行此类评估对于公民科学项目来说可能会带来变革。 PI 将在公民科学项目中展示他们基于代理的质量模型,包括他们自己的 NatureNet 项目,该项目涉及人群参与者参与自然保护区的数据收集,以及促进数据收集的科学挑战和互动体验的设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Lou Maher其他文献

Enabling Investigation of Impacts of Inclusive Collaborative Active Learning Practices on Intersectional Groups of Students in Computing Education
调查包容性协作主动学习实践对计算机教育中交叉学生群体的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sri Yash Tadimalla;Celine Latulipe;Mary Lou Maher;Marlon Mejias;Jamie Payton;A. Rorrer;John Fiore;G. Kwatny;Andrew Rosen
  • 通讯作者:
    Andrew Rosen
Exploring AI-based Computational Models of Novelty to Encourage Curiosity in Student Learning
探索基于人工智能的新颖计算模型,以激发学生学习的好奇心
  • DOI:
    10.1007/s42979-024-02837-x
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maryam Mohseni;Mary Lou Maher;Kazjon Grace;Safat Siddiqui;Nadia Najjar
  • 通讯作者:
    Nadia Najjar
Risks and benefits of mass screening for colorectal neoplasia with the stool guaiac test
通过粪便愈创木脂试验大规模筛查结直肠肿瘤的风险和益处
  • DOI:
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Winchester;Joanne Sylvester;Mary Lou Maher
  • 通讯作者:
    Mary Lou Maher
Implications of Identity in AI: Creators, Creations, and Consequences
人工智能中身份的含义:创造者、创造和后果
  • DOI:
    10.1609/aaaiss.v3i1.31268
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sri Yash Tadimalla;Mary Lou Maher
  • 通讯作者:
    Mary Lou Maher
An Exploratory Study on the Impact of AI tools on the Student Experience in Programming Courses: an Intersectional Analysis Approach
人工智能工具对学生编程课程体验影响的探索性研究:交叉分析方法

Mary Lou Maher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Lou Maher', 18)}}的其他基金

Conference: NSF Workshop: Expanding Capacity and Diversity in AI Education
会议:NSF 研讨会:扩大人工智能教育的能力和多样性
  • 批准号:
    2330257
  • 财政年份:
    2023
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Examining the Effects of Course Climate, Active Learning, and Intersectional Identities on Undergraduate Student Success in Computing
检查课程气氛、主动学习和交叉身份对本科生计算机成功的影响
  • 批准号:
    2111376
  • 财政年份:
    2021
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
I-Corps: Digital Platform for Informal Learning Experiences to Encourage Curiosity in STEM Career Paths
I-Corps:提供非正式学习体验的数字平台,鼓励对 STEM 职业道路的好奇心
  • 批准号:
    2031900
  • 财政年份:
    2020
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
EAGER: An Interactive Learning Analytics Framework based on a Student Sequence Model for understanding students, retention, and time to graduation
EAGER:基于学生序列模型的交互式学习分析框架,用于了解学生、保留率和毕业时间
  • 批准号:
    1820862
  • 财政年份:
    2018
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing a Systemic, Scalable Model to Broaden Participation in Middle School Computer Science
合作研究:开发系统的、可扩展的模型以扩大中学计算机科学的参与
  • 批准号:
    1837240
  • 财政年份:
    2018
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
RI: Small: CompCog: Pique: A Cognitive Model of Curiosity for Personalizing Sequences of Learning Resources
RI:小:CompCog:Pique:用于个性化学习资源序列的好奇心认知模型
  • 批准号:
    1618810
  • 财政年份:
    2016
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
IUSE/PFE:RED: The Connected Learner: Design Patterns for Transforming Computing and Informatics Education
IUSE/PFE:RED:互联学习者:变革计算和信息学教育的设计模式
  • 批准号:
    1519160
  • 财政年份:
    2015
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
AISL: Innovations in Development: Community-Driven Projects That Adapt Technology for Environmental Learning in Nature Preserves
AISL:发展创新:社区驱动的项目,采用自然保护区环境学习技术
  • 批准号:
    1423212
  • 财政年份:
    2015
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Continuing Grant
VOSS: Crowdsourcing interaction design for citizen science virtual organizations
VOSS:公民科学虚拟组织的众包交互设计
  • 批准号:
    1221513
  • 财政年份:
    2012
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
HCC: Small: Designing Tangible Computing for Creativity
HCC:小型:为创造力设计有形计算
  • 批准号:
    1218160
  • 财政年份:
    2012
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了