Collaborative Research: SI2-SSI: Big Weather Web: A Common and Sustainable Big Data Infrastructure in Support of Weather Prediction Research and Education in Universities
合作研究:SI2-SSI:大天气网:支持大学天气预报研究和教育的通用且可持续的大数据基础设施
基本信息
- 批准号:1450439
- 负责人:
- 金额:$ 16.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Earth science communities need to rely on access to large and growing amounts of curated data to make progress in research and provide adequate education. Existing infrastructures pose significant barriers to this access, especially for small to mid-size research groups and primarily undergraduate institutions: cloud services disappear when funding runs out to pay for them and therefore do not provide the long-term availability required for curated data. Similarly, in-house IT infrastructure is maintenance-intensive and requires dedicated resources for which long-term funding is often unavailable. The goal of the Big Weather Web is to make in-house IT infrastructure affordable by combining the application of three recent technologies: virtualization, federated smart storage, and big data management. Virtualization allows push-button deployment and maintenance of complex systems, smart storage provides automatic, community-wide data availability guarantees, and big data management allows for easy curation of data and its products. The combination of these three technologies allows communities to create a standard community-specific computational environment and efficiently refine it with minimal repetition of work, introducing a high degree of reproducibility in research and education. This reproducibility accelerates learning and amplifies everyone?s contribution. Due to virtualization, it can easily take advantage of cloud services whenever they become available, and it can run on in-house IT infrastructure using significantly reduced maintenance resources. The Big Weather Web will be developed in the context of numerical weather prediction with the expectation that the resulting infrastructure can be easily adapted to other data-intensive scientific communities.The volume, variety, and velocity of scientific data generated is growing exponentially. Small to mid-size research groups and especially primarily undergraduate institutions (PUIs) do not have the resources to manage large amounts of data locally and share their data products globally at high availability. This lack of resources has a number of consequences in education and research that have been well-documented in recent EarthCube workshops: (1) data-intensive scientific results are not easily reproducible, whether in the context of research or education, (2) limited or non-existent availability of intermediate results causes a lot of unnecessary duplication of work and makes learning curves unnecessarily steep, and consequently (3) scientific communities of practice are falling behind technological innovations. This Big Weather Web project focuses on the numerical weather prediction community. Numerical weather models produce terabytes of output per day, comprising a wealth of information that can be used for research and education, but this amount of data is difficult to transfer, store, or analyze for most universities. The Big Weather Web addresses this situation with the design, implementation, and deployment of "nuclei," which are shared artifacts that enable reliable and efficient access and sharing of data, encode best practices, and are sustainably maintained and improved by the community. These nuclei use existing and well-established technologies, but the integration of these technologies will significantly reduce the resource burden mentioned above. Nucleus 1 is a large ensemble distributed over seven universities. Nucleus 2 is a common storage, linking, and cataloging methodology implemented as an appliance-like Data Investigation and Sharing Environment (DISE) that is extremely easy to maintain and that automatically ensures data availability and safety. Nucleus 3 is a versioned virtualization and container technology for easy deployment and reproducibility of computational environments. Together, these nuclei will advance discovery and understanding through sharing of data products and methods to replicate scientific results while promoting teaching, training, and learning by creating a shared environment for scientific communities of practice. These shared environments are particularly important for underrepresented groups who otherwise have limited access to knowledge that is primarily propagated by social means. Our approach is a significant step towards improving reproducibility in the complex computational environments found in many scientific communities.
地球科学社区需要依靠获取大量和越来越多的策划数据来取得研究进展并提供足够的教育。现有的基础设施对此访问构成了重大障碍,尤其是对于中小型研究小组,主要是本科机构:云服务在资金用尽以支付这些费用时消失,因此不提供策划数据所需的长期可用性。同样,内部的IT基础设施是维护的,需要专门的资源,而这些资源通常不可用。大天气网的目的是通过结合三种最近的技术的应用来使内部IT IT基础架构负担得起:虚拟化,联合智能存储和大数据管理。虚拟化允许按钮的部署和维护复杂系统,Smart Storage提供自动,社区范围内的数据可用性保证,而大数据管理则可以轻松策划数据及其产品。这三种技术的结合使社区可以创建一个标准的社区特定计算环境,并通过最少的工作重复来有效地完善它,从而在研究和教育中引入了高度的可重复性。这种可重复性可以加速学习并扩大每个人的贡献。由于虚拟化,每当云服务可用时,它都可以轻松利用云服务,并且可以使用大幅减少的维护资源在内部IT IT基础架构上运行。大天气网络将在数值天气预测的背景下开发,并期望由此产生的基础设施很容易适应其他数据密集型科学群落。所产生的科学数据的数量,多样性和速度正在呈指数增长。中小型研究小组,尤其是主要是本科机构(PUI)没有资源来管理大量数据,并以高可用性在全球范围内共享其数据产品。这种缺乏资源在最近的Earthubube研讨会中已经有充分记录的教育和研究后果:(1)数据密集型科学结果不容易重现,((2)有限或非存在的中等结果的可用性会导致许多不必要的练习,并导致了许多不必要的练习,并导致了经过艰巨的态度,并且陷入了艰巨的态度,并且有必要的局限性(3岁)是不必要的,并且是不必要的(3岁),并且是不必要的,并且是不必要的,并且是不必要的,并且是不必要的,并且是不必要的效果。创新。这个大天气网络项目着重于数值天气预测界。数值天气模型每天生产出产出的trabyt,其中包括可用于研究和教育的大量信息,但是对于大多数大学来说,这一数量的数据很难转移,存储或分析。大天气网络通过“ Nuclei”的设计,实施和部署来解决这种情况,它们是共享的人工制品,可以使数据可靠,有效地访问和共享,编码最佳实践,并得到社区可持续维护和改进。这些核使用现有和公认的技术,但是这些技术的整合将大大减轻上述资源负担。核1是在七所大学上分布的大型合奏。 Nucleus 2是一种常见的存储,链接和分类方法,该方法是一种类似设备的数据调查和共享环境(DISE)实施的,非常易于维护,并自动确保数据的可用性和安全性。 Nucleus 3是一种版本的虚拟化和容器技术,可在计算环境中易于部署和可重复性。这些核共同通过共享数据产品和方法来提高发现和理解,以复制科学结果,同时通过为科学的实践社区创造共同的环境来促进教学,培训和学习。这些共享环境对于代表性不足的群体尤其重要,这些群体否则对知识的访问有限,而知识主要通过社会手段传播。我们的方法是在许多科学社区发现的复杂计算环境中改善可重复性的重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen Evans其他文献
Collaborative Work Environments in Shell - Global Scale, Learning and Evolution
壳牌的协作工作环境 - 全球规模、学习和发展
- DOI:
10.2118/167455-ms - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
F. G. V. D. Berg;G. A. McCallum;Matt Graves;Elizabeth Heath;Allen Evans - 通讯作者:
Allen Evans
Allen Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen Evans', 18)}}的其他基金
AGS-FIRP Track 1: Learning by Doing: Observing the Lake Michigan Lake-Breeze Circulation
AGS-FIRP 轨道 1:边做边学:观察密歇根湖微风环流
- 批准号:
2347093 - 财政年份:2024
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
Thermodynamics of Tropical Cyclone Overland Maintenance and Intensification
热带气旋陆上维持和强化的热力学
- 批准号:
1911671 - 财政年份:2019
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
Numerical Assessment of the Practical and Intrinsic Predictability of Warm-Season Convection Initiation Using Mesoscale Predictability Experiment (MPEX) Data
使用中尺度可预测性实验(MPEX)数据对暖季对流引发的实际和内在可预测性进行数值评估
- 批准号:
1347545 - 财政年份:2014
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2039142 - 财政年份:2020
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
- 批准号:
2114580 - 财政年份:2020
- 资助金额:
$ 16.44万 - 项目类别:
Continuing Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2001752 - 财政年份:2019
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743178 - 财政年份:2018
- 资助金额:
$ 16.44万 - 项目类别:
Continuing Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743185 - 财政年份:2018
- 资助金额:
$ 16.44万 - 项目类别:
Continuing Grant