Collaborative Research: Revealing the Role of Less-Mobile Porosity in Hyporheic Denitrification and Greenhouse Gas Production

合作研究:揭示流动性较差的孔隙在潜流反硝化和温室气体产生中的作用

基本信息

  • 批准号:
    1446375
  • 负责人:
  • 金额:
    $ 8.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

Streams and rivers have a remarkable cleansing function for natural and human generated contaminants, as microbes living in the streambed can transform these contaminants into less harmful compounds. Excess nitrogen in our terrestrial and aquatic ecosystems is now considered one of the greatest global-scale threats to humanity by degrading water quality and producing a powerful greenhouse gas. This research couples the cleansing function of rivers to this global excess nitrogen issue. Streambed bacteria can break down the reactive nitrogen compounds, primarily releasing non-reactive nitrogen gas that returns harmlessly to the atmosphere. However, a fraction is released as the strong greenhouse gas nitrous-oxide (N2O). Compelling data indicates pockets of longer-term water storage in streambeds, or microzones, create the low-oxygen conditions needed to both break-down dissolved nitrogen and form N2O. New remote sensing techniques of streambed microzones will allow us to better resolve the how nitrogen is attenuated and transformed through river transport, improving evaluations of watershed nutrient mitigation and helping better predict future climate change. Further, this research will dovetail with STEM education via community level partnerships with established outreach institutions. Outreach partners (Impression 5 Science Center and MSUSiFest) specialize in developing, executing and evaluating STEM exhibits and activities for children ages 4-12 and community "life-learners", both of which are key STEM demographics. Project PIs will connect with UConn undergraduate design teams and outreach partners to develop novel groundwater and streambed flow model exhibits and inquiry-based demonstrations designed to harness society's increasing fascination with real-time sensing and interaction. Outreach partners will use these products to illustrate principles of groundwater flow, contaminant transport, and greenhouse gas production, reaching 150,000+ students and community members each year.This project will link and quantify transient storage via dual-domain mass transport principles with the biogeochemical functions of stream sediments to reveal new insights on hyporheic denitrification and stream N2O production. This work is timely because recent global assessments reveal that rivers are major N2O producers, but the mechanism and spatial distribution of production remain unknown. Contrary to existing biogeochemical models for stream sediments, it is hypothesized that nitrate reduction to N2O occurs predominantly within streambed sediments that are oxic in a bulk sense but have local, anoxic less-mobile pore spaces. Largely overlooked in past work, these anoxic microsites must be mechanistically understood in order to upscale freshwater nitrogen dynamics from point, to reach, to basin scales. New observation methods and process-based models are needed to account for the role of anoxic microsites in fluid exchange and nitrogen biogeochemistry. Recently, project team members developed electrical geophysical methods for inference of less-mobile parameters, as the electric field can directly sense spatially variable solute dynamics in less-mobile porosity. Other team members have focused on developing labeled 15N tracer methods to reveal residence time controls on denitrification. These techniques will be combined to unlock the presence and function of anoxic microsites. The workplan comprises controlled laboratory experiments, numerical modeling, and field experiments at an established research site in the Ipswich Watershed, MA, USA. Our work will directly connect new process-based understanding to existing river network nitrate models, extending and capitalizing on previous NSF LINXII research. Specifically, the intrinsic properties of less-mobile pore space will be characterized, the existence of anoxic microsites and denitrification occurring in anaerobic microsites will be quantified, and multi-scale patterns of river nitrogen biogeochemistry will be enhanced. Overall, this work will transform the current understanding of hyporheic microsite processes, providing new mechanistic models of the role of hyporheic zones on watershed solute transport, nitrogen cycling and greenhouse gas production. The proposed research will address big questions about some very small places in our watersheds by quantifying hydrodynamic exchange with previously uncharacterized less-mobile hyporheic pore space.
溪流和河流对自然和人类产生的污染物具有显着的净化功能,因为生活在河床上的微生物可以将这些污染物转化为危害较小的化合物。我们的陆地和水生生态系统中的过量氮现在被认为是对人类最大的全球威胁之一,因为它会降低水质并产生强大的温室气体。这项研究将河流的净化功能与全球氮过剩问题联系起来。河床细菌可以分解活性氮化合物,主要释放非活性氮气,这些氮气无害地返回到大气中。然而,一小部分会以强温室气体一氧化二氮 (N2O) 的形式释放。令人信服的数据表明,河床或微区中的长期储水区域创造了分解溶解氮和形成 N2O 所需的低氧条件。河床微区的新遥感技术将使我们能够更好地解决氮如何通过河流运输衰减和转化,改进对流域养分缓解的评估,并帮助更好地预测未来的气候变化。此外,这项研究将通过与已建立的推广机构在社区层面的合作,与 STEM 教育相结合。外展合作伙伴(印象 5 科学中心和 MSUSiFest)专门为 4-12 岁儿童和社区“生活学习者”开发、执行和评估 STEM 展览和活动,这两者都是 STEM 的关键人群。项目负责人将与康涅狄格大学本科生设计团队和推广合作伙伴联系,开发新颖的地下水和河床流动模型展览和基于查询的演示,旨在利用社会对实时传感和交互日益增长的迷恋。外展合作伙伴将使用这些产品来说明地下水流、污染物迁移和温室气体产生的原理,每年覆盖超过 150,000 名学生和社区成员。该项目将通过双域传质原理与生物地球化学功能将瞬时储存联系起来并进行量化河流沉积物的研究揭示了关于潜流反硝化和河流 N2O 产生的新见解。这项工作是及时的,因为最近的全球评估表明河流是 N2O 的主要产生者,但产生的机制和空间分布仍然未知。与现有的河流沉积物生物地球化学模型相反,假设硝酸盐还原成 N2O 主要发生在河床沉积物中,这些沉积物在整体意义上是含氧的,但具有局部缺氧、移动性较小的孔隙空间。这些缺氧微场所在过去的工作中很大程度上被忽视了,但必须从机械上理解这些缺氧微场所,以便从点到达到、再到盆地尺度升级淡水氮动态。需要新的观测方法和基于过程的模型来解释缺氧微站点在流体交换和氮生物地球化学中的作用。最近,项目团队成员开发了电地球物理方法来推断不易移动参数,因为电场可以直接感知不易移动孔隙中空间变化的溶质动力学。其他团队成员专注于开发标记 15N 示踪剂方法,以揭示反硝化的停留时间控制。这些技术将被结合起来,以揭示缺氧微站点的存在和功能。该工作计划包括受控实验室实验、数值模拟以及在美国马萨诸塞州伊普斯威奇流域的既定研究地点进行的现场实验。我们的工作将直接将新的基于过程的理解与现有河网硝酸盐模型联系起来,扩展并利用之前的 NSF LINXII 研究。具体来说,将表征流动性较小的孔隙空间的内在特性,量化缺氧微场所的存在和厌氧微场所中发生的反硝化,并增强河流氮生物地球化学的多尺度模式。总的来说,这项工作将改变目前对微流域过程的理解,为流域溶质迁移、氮循环和温室气体产生的作用提供新的机制模型。拟议的研究将通过量化与以前未表征的流动性较小的潜流孔隙空间的水动力交换来解决有关我们流域中一些非常小的地方的重大问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamini Singha其他文献

Kamini Singha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamini Singha', 18)}}的其他基金

Collaborative Research: How roots, regolith, rock and climate interact over decades to centuries — the R3-C Frontier
合作研究:根系、风化层、岩石和气候在数十年至数百年中如何相互作用 - R3-C 前沿
  • 批准号:
    2121659
  • 财政年份:
    2021
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Network Cluster: Bedrock controls on the deep critical zone, landscapes, and ecosystems
合作研究:网络集群:对深层关键区域、景观和生态系统的基岩控制
  • 批准号:
    2012408
  • 财政年份:
    2020
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
CZ RCN: Expanding knowledge of the Earth's Critical Zone: connecting data to models
CZ RCN:扩展地球关键区域的知识:将数据连接到模型
  • 批准号:
    1904527
  • 财政年份:
    2019
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Emergent Hydrological Properties Associated with Multiple Channel-Spanning Logjams
合作研究:与多航道堵塞相关的新兴水文特性
  • 批准号:
    1819134
  • 财政年份:
    2018
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Laboratory Technician Support: Expanding Capabilities for Experimental Hydrogeophysics Research and Outreach
实验室技术人员支持:扩大实验水文地球物理研究和推广的能力
  • 批准号:
    1824330
  • 财政年份:
    2018
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: How do interactions of transport and stoichiometry maximize stream nutrient retention?
合作研究:运输和化学计量的相互作用如何最大限度地保留河流养分?
  • 批准号:
    1642403
  • 财政年份:
    2017
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Calibrating Shallow Geophysical Techniques to Detect Large Wood Buried in River Corridors
合作研究:校准浅层地球物理技术以检测埋在河流走廊中的大型木材
  • 批准号:
    1612983
  • 财政年份:
    2016
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: From Roots to Rock - Linking Evapotranspiration and Groundwater Fluxes in the Critical Zone
合作研究:从根部到岩石 - 将关键区域的蒸散量和地下水通量联系起来
  • 批准号:
    1446231
  • 财政年份:
    2015
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling Transport in Porous Media through the Integration of Isotopic Tracers, Geophysical Data, and Numerical Modeling
合作研究:通过同位素示踪剂、地球物理数据和数值模拟的集成来揭示多孔介质中的输运
  • 批准号:
    1446235
  • 财政年份:
    2015
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Early Career: Acquisition of Instrumentation to Measure Electrical Resistivity at the Field and Lab Scale
早期职业生涯:购买仪器以在现场和实验室规模测量电阻率
  • 批准号:
    1338461
  • 财政年份:
    2013
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant

相似国自然基金

在全基因组水平揭示人工合成八倍体小黑麦基因组变异规律与分子机制的研究
  • 批准号:
    32372132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
单细胞拟时序分析揭示结直肠癌异时性肝转移的早期血清标志物谱及转移定植机制研究
  • 批准号:
    82372336
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于跨物种多组学揭示骨骼肌衰老过程中的转录后调控缺陷和相关功能基因的研究
  • 批准号:
    32301238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于CRISPR-CasRx基因敲入鼠文库筛选揭示Zfp985调控心肌细胞增殖的分子机制研究
  • 批准号:
    82300290
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH PGR: The epigenomic selfing syndrome: revealing the impact of breeding system on epigenomes
合作研究:研究 PGR:表观基因组自交综合症:揭示育种系统对表观基因组的影响
  • 批准号:
    2247915
  • 财政年份:
    2023
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了