Collaborative Research: Detecting Seismic Anisotropy in the Upper Mantle and Upper Mantle Transition Zone

合作研究:探测上地幔和上地幔过渡带的地震各向异性

基本信息

项目摘要

The heat that escapes from Earth's core is brought towards the surface through convection, a process that causes solid rocks in the mantle to flow and deform over geological time scales. Hot materials rise to the surface, while cold materials sink to the bottom. The overturn of the mantle through convection is thought to be the driving mechanism behind the motion of the rigid plates that divide the Earth's crust, which in turn generates earthquakes and volcanoes. Fundamental questions remain regarding the nature of the boundary that separates the rigid plates at the surface from the underlying, more deformable convecting mantle. In particular, the nature of the mantle transition zone between 410 and 670 km depth plays an important role in determining the nature of convection in the Earth. Flow or deformation of the rocks in the mantle will align minerals with the flow direction, which can be detected with seismic waves through the observation of seismic anisotropy. Here, the velocity with which waves travel becomes a function of the orientation of the travel path. In this project, the PIs will model three-dimensional variations in seismic anisotropy in the upper 800 km of the mantle. By combining multiple types of seismic data, the investigators will greatly enhance the accuracy of their model, particularly in the mantle transition zone. Their numerical forward modeling technique allows the team to quantitatively assess model uncertainties. This key element is necessary to interpret their models in terms of mineral physics, geodynamics, or mantle geochemistry, and to guide future research. The results will benefit the geoscience community as a whole through improved models of mantle deformation and plate tectonics, public outreach presentation, and training of graduate students in deep earth research science.The proposed work will address three major questions: (1) What is the seismological character of the lithosphere-asthenosphere boundary (LAB)? (2) Is there detectable seismic anisotropy in the deep upper mantle and mantle transition zone (MTZ)? (3) What is the nature of the MTZ and it's role in convection? To answer these questions, the investigators will model global, three-dimensional (3-D) variations in radial and azimuthal seismic anisotropy in the upper 800km of the mantle using a joint forward modeling approach for fundamental and higher mode surface wave dispersion measurements, surface wave arrival angle measurements, SS precursor travel times, and SKS splitting data. The proposed research will produce (1) a new surface wave arrival angle dataset that will greatly enhance the imaging of small-scale anisotropy in the uppermost mantle. This will allow us to obtain new, improved insight on the nature of the oceanic and continental LAB; (2) a new 3-D model of azimuthal and radial anisotropy in the upper 800km of the mantle. It will enable us to test for the presence and sign of radial anisotropy in the deep upper mantle, which can impose constraints on the dominant shear direction and mantle flow at these depths. It will also test the ability to resolve lateral variations in radial and azimuthal anisotropy below 250km and how such structures are related to mantle dynamics; (3) the integration of a new global dataset of SS precursor travel times providing topography at the MTZ boundaries. This will reduce trade-offs between MTZ boundaries topography and 3-D structural variations in the MTZ, as well as provide new constraints on the thermal versus compositional nature of this depth shell of the Earth. An important facet of this research is the use of numerical forward modeling to statistically identify well-constrained features of the new models. With forward modeling the team will be able to assess model resolution by quantifying parameter trade-offs and uncertainties, which is key to determining which model parameters are robust. It will also guide future research in determining what other type of data is needed to further improve resolution.
从地核逸出的热量通过对流被带到地表,这一过程导致地幔中的固体岩石在地质时间尺度上流动和变形。热的物质上升到表面,而冷的物质沉到底部。通过对流引起的地幔翻转被认为是划分地壳的刚性板块运动背后的驱动机制,进而产生地震和火山。关于将地表刚性板块与下方更容易变形的对流地幔分开的边界的性质,仍然存在一些基本问题。特别是410至670公里深度之间的地幔过渡带的性质对于确定地球对流的性质起着重要作用。地幔中岩石的流动或变形会使矿物与流动方向对齐,这可以通过地震各向异性的观测用地震波来检测。这里,波传播的速度成为传播路径方向的函数。在这个项目中,PI 将模拟地幔上部 800 公里范围内地震各向异性的三维变化。通过结合多种类型的地震数据,研究人员将大大提高模型的准确性,特别是在地幔过渡带。他们的数值正演建模技术使团队能够定量评估模型的不确定性。这一关键要素对于解释他们的矿物物理学、地球动力学或地幔地球化学模型以及指导未来的研究是必要的。研究结果将通过改进地幔变形和板块构造模型、公共宣传展示以及对深部地球研究科学研究生的培训,使整个地球科学界受益。拟议的工作将解决三个主要问题:(1)什么是地球科学界?岩石圈-软流圈边界(LAB)的地震学特征? (2)上地幔深部和地幔过渡带(MTZ)是否存在可探测到的地震各向异性? (3) MTZ 的性质是什么及其在对流中的作用?为了回答这些问题,研究人员将使用联合正演建模方法对地幔上部 800 公里径向和方位地震各向异性的全球三维 (3-D) 变化进行建模,以进行基波和高模表面波色散测量、表面波波到达角测量、SS 前兆传播时间和 SKS 分裂数据。拟议的研究将产生(1)一个新的表面波到达角数据集,该数据集将大大增强最上地幔小尺度各向异性的成像。这将使我们能够对海洋和大陆实验室的性质获得新的、改进的见解; (2)地幔上层800km的方位角和径向各向异性的新3-D模型。它将使我们能够测试上地幔深处径向各向异性的存在和迹象,这可以对这些深度的主要剪切方向和地幔流施加限制。它还将测试解决250公里以下径向和方位各向异性横向变化的能力,以及这些结构与地幔动力学的关系; (3) 整合新的SS前兆走时全球数据集,提供 MTZ 边界的地形。这将减少 MTZ 边界地形和 MTZ 3-D 结构变化之间的权衡,并为地球深度壳的热与成分性质提供新的约束。这项研究的一个重要方面是使用数值正演模型来统计识别新模型的良好约束特征。通过正向建模,团队将能够通过量化参数权衡和不确定性来评估模型分辨率,这是确定哪些模型参数稳健的关键。它还将指导未来的研究,以确定需要哪些其他类型的数据来进一步提高分辨率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabriele Laske其他文献

Gabriele Laske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gabriele Laske', 18)}}的其他基金

MRI: Development of a Telemetered Seafloor Seismic Observatory (TeSSO)
MRI:遥测海底地震观测站 (TeSSO) 的开发
  • 批准号:
    2214269
  • 财政年份:
    2023
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mapping and Understanding Seismic Anisotropy in the Northeast Pacific Ocean
合作研究:绘制和了解东北太平洋地震各向异性
  • 批准号:
    1830959
  • 财政年份:
    2020
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Using Seafloor Compliance to image the Crust around Hawaii
使用海底顺应性对夏威夷周围的地壳进行成像
  • 批准号:
    1736516
  • 财政年份:
    2017
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
Seismic Anisotropy across the USArray using Surface-wave Arrival Angles
使用表面波到达角的 USArray 地震各向异性
  • 批准号:
    1722579
  • 财政年份:
    2017
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
Recalibration of OBSIP Instrument Orientations
OBSIP 仪器方向的重新校准
  • 批准号:
    1634440
  • 财政年份:
    2016
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
Improved Dissemination of Global Crustal Model CRUST1.0
改进全球地壳模型 CRUST1.0 的传播
  • 批准号:
    1415763
  • 财政年份:
    2014
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
Collaborative Research: The Hawaiian PLUME Deployment in a Global Context
合作研究:全球背景下的夏威夷 PLUME 部署
  • 批准号:
    1215636
  • 财政年份:
    2012
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Anisotropic Mantle: Advancing Models of Regional Flow and Associated Seismic Signature
各向异性地幔:推进区域流和相关地震特征模型
  • 批准号:
    1141934
  • 财政年份:
    2012
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Earth's Density and Inner Core Rotation after the great Sumatra-Andaman Earthquake
苏门答腊-安达曼大地震后地球的密度和内核旋转
  • 批准号:
    0635587
  • 财政年份:
    2007
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: PLUME - A Seismic Experiment to Image the Hawaiian Hotspot and Swell
合作研究:PLUME——对夏威夷热点和涌浪进行成像的地震实验
  • 批准号:
    0002470
  • 财政年份:
    2003
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于血红素加氧酶-1的原位在体检测和靶向泛癌治疗研究
  • 批准号:
    22377029
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
视觉与语义融合的场景文字检测与识别技术研究
  • 批准号:
    62376266
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向小样本场景的新型网络入侵流量检测方法研究
  • 批准号:
    62302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于梯度磁场的油液金属磨粒高灵敏检测机理研究
  • 批准号:
    52301361
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
典型中药中黄曲霉毒素污染早期预警信号分子的挖掘及其可视化检测方法研究
  • 批准号:
    82374032
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
  • 批准号:
    2230060
  • 财政年份:
    2023
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
  • 批准号:
    2230061
  • 财政年份:
    2023
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203144
  • 财政年份:
    2022
  • 资助金额:
    $ 12.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了