HCC: Small: Collaborative Research: Real-Time Captioning by Groups of Non-Experts for Deaf and Hard of Hearing Students

HCC:小型:协作研究:由非专家小组为聋哑和听力障碍学生提供实时字幕

基本信息

  • 批准号:
    1446129
  • 负责人:
  • 金额:
    $ 31.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-31 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Many deaf and hard of hearing students use real-time captioning to participate in education. Generally, real-time captions are provided by skilled professional captionists (stenographers) who use specialized keyboards or software to keep up with natural speaking rates of up to 225 words per minute. But professional captionists are expensive and must be arranged in advance in blocks of at least an hour. Automatic speech recognition (ASR) is improving, but still experiences high error rates in real classrooms. In this collaborative effort involving the University of Rochester and Rochester Institute of Technology, the PIs will address these issues by blending human- and machine-powered captioning to produce captions on demand, in real time, for low cost. The PIs' approach is for multiple non-experts and ASR to collectively caption speech in under 5 seconds, with the help of interfaces which encourage quick, incomplete captioning of live audio. Because non-experts cannot keep up with natural speaking rates, new algorithms will merge incomplete captions in real time. (While the sequence alignment problem can be solved exactly with dynamic programming, existing approaches are too slow, are not robust to input error, and do not incorporate natural language semantics.) Systematically varying audio saliency will encourage complete coverage of speech. Non-expert captions will train ASR engines in real time, so that ASR may improve during a lecture. (Traditional approaches for ASR training assume that training occurs offline.) The quikCaption mobile application will embody these ideas and will be iteratively designed with deaf and hard of hearing students at the National Technical Institute of the Deaf (NTID) via design sessions, lab studies and in-class deployments. Non-expert captionists can be drawn from broad sources: volunteers willing to donate their time, classmates with relevant domain knowledge, or always-available paid workers. They may be local (in the classroom) or remote. Captionists may have experience from prior quikCaption sessions, or novice crowd workers recruited on demand from existing marketplaces (e.g., Mechanical Turk). A flexible worker pool will allow real-time captions to be available on demand at low cost and for only as long as needed.Broader Impacts: This research will dramatically improve education for deaf and hard of hearing students by enabling access to serendipitous opportunities, such as conversations after class or last-minute guest lectures for which no interpreter or captionist was arranged. Real-time captioning will also be useful in other settings such as school programs, artistic performances, and political events. Older hard of hearing adults usually prefer captioning, and represent a sizable and growing population; hearing people may benefit because captioning is a first step in automatic translation of aural speech. The algorithms developed as part of this project for real-time merging of incomplete natural language will likely be adaptable for other applications such as collaborative translation or communication over noisy mediums.
许多聋哑和听力的障碍学生使用实时字幕参加教育。 通常,实时字幕由熟练的专业字幕主义者(速记员)提供,他们使用专门的键盘或软件来跟上每分钟最多225个单词的自然语言。 但是专业的字幕主义者很昂贵,必须在至少一个小时内提前安排。 自动语音识别(ASR)正在改善,但在真实教室中仍然经历了很高的错误率。 在涉及罗切斯特大学和罗切斯特理工学院的这项合作努力中,PIS将通过将人为和机器的字幕融合以低成本来解决这些问题。 PIS的方法是针对多个非专家和ASR,可以在不到5秒钟内集体字幕演讲,并借助界面,鼓励快速,不完整的实时音频字幕。 由于非专家无法跟上自然的说话率,因此新算法将实时合并不完整的字幕。 (虽然可以通过动态编程来准确解决序列对齐问题,但现有方法太慢,无法强大而无法输入错误,并且不纳入自然语言语义。)系统地改变音频显着性将鼓励对语音进行完全覆盖。 非专家字幕将实时训练ASR发动机,以便在演讲中可以改善ASR。 (ASR培训的传统方法假设培训是离线发生的。)QuikCaption移动应用程序将体现这些想法,并通过设计课程,实验室研究和课堂部署在国家聋人国家技术研究所(NTID)上进行聋哑和听力的学生进行迭代设计。 可以从广泛的来源中汲取非专家字幕主义者:愿意捐赠时间的志愿者,具有相关领域知识的同学或始终可用的付费工人。 他们可能是本地(在教室中)或遥控器。 字幕主义者可能会从以前的Quikcaption会议中获得经验,或者是从现有市场(例如机械Turk)招募的新手人群工人。 灵活的工人池将允许以低成本的方式按需按需提供实时字幕。Boader的影响:这项研究将通过使能够获得偶然的机会(例如上课后的对话或最后一分钟的客人演讲,没有讲解者或安排的待遇者的讲座),从而极大地改善了对聋人和听力障碍学生的教育。 实时字幕也将在其他环境中有用,例如学校课程,艺术表演和政治活动。 年龄较大的成年人通常更喜欢字幕,代表大量和增长的人口;听力人可能会受益,因为字幕是听觉演讲自动翻译的第一步。 作为该项目开发的算法,用于实时合并不完整的自然语言的一部分,可能会适用于其他应用程序,例如在嘈杂媒介上进行协作翻译或通信。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Jeffrey Bigham的其他基金

FW-HTF-RL: Collaborative Research: Up-skilling and Re-skilling Marginalized Rural and Urban Digital Workers: AI-worker collaboration to access creative work
FW-HTF-RL:协作研究:边缘化农村和城市数字工人的技能提升和再培训:人工智能与工人协作以获得创造性工作
  • 批准号:
    1928631
    1928631
  • 财政年份:
    2019
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
CHS: Small: Deep Integration of Crowds and AI for Robust, Scalable, and Privacy-Preserving Conversational Assistance
CHS:小型:人群和人工智能的深度集成,提供强大、可扩展且保护隐私的对话协助
  • 批准号:
    1816012
    1816012
  • 财政年份:
    2018
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
WORKSHOP: The Human-Computer Interaction Doctoral Research Consortium at ACM CHI 2017
研讨会:ACM CHI 2017 上的人机交互博士研究联盟
  • 批准号:
    1734526
    1734526
  • 财政年份:
    2017
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
CHS: Small: Early Dyslexia Detection and Support at Scale to Help Students Succeed in School
CHS:小型:早期诵读困难检测和大规模支持,帮助学生在学校取得成功
  • 批准号:
    1618784
    1618784
  • 财政年份:
    2016
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
I-Corps: Real-Time Crowd Captioning
I-Corps:实时人群字幕
  • 批准号:
    1338678
    1338678
  • 财政年份:
    2013
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Closed-Loop Crowd Support for People with Disabilities
职业:为残疾人士提供闭环群众支持
  • 批准号:
    1443760
    1443760
  • 财政年份:
    2013
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Continuing Grant
    Continuing Grant
HCC: Small: Collaborative Research: Real-Time Captioning by Groups of Non-Experts for Deaf and Hard of Hearing Students
HCC:小型:协作研究:由非专家小组为聋哑和听力障碍学生提供实时字幕
  • 批准号:
    1218209
    1218209
  • 财政年份:
    2012
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Closed-Loop Crowd Support for People with Disabilities
职业:为残疾人士提供闭环群众支持
  • 批准号:
    1149709
    1149709
  • 财政年份:
    2012
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Workshop: Doctoral Consortium for ASSETS 2012
研讨会:资产博士联盟 2012
  • 批准号:
    1240198
    1240198
  • 财政年份:
    2012
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
EAGER: VizWiz - Enabling Blind People to Answer Visual Questions On-the-Go with Remote Automatic and Human-Powered Services
EAGER:VizWiz - 通过远程自动和人力服务,盲人能够随时随地回答视觉问题
  • 批准号:
    1049080
    1049080
  • 财政年份:
    2010
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
  • 批准号:
    2327136
    2327136
  • 财政年份:
    2023
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
  • 批准号:
    2147044
    2147044
  • 财政年份:
    2023
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: HCC: Small: Computational Design and Application of Wearable Haptic Knits
合作研究:HCC:小型:可穿戴触觉针织物的计算设计与应用
  • 批准号:
    2301355
    2301355
  • 财政年份:
    2023
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
  • 批准号:
    2302969
    2302969
  • 财政年份:
    2023
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
  • 批准号:
    2401775
    2401775
  • 财政年份:
    2023
  • 资助金额:
    $ 31.72万
    $ 31.72万
  • 项目类别:
    Standard Grant
    Standard Grant