PECASE:Fluid Dynamics of bacterial aggregation and formation of biofilm streamers

PECASE:细菌聚集和生物膜流形成的流体动力学

基本信息

  • 批准号:
    1445955
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

1150348ArdekaniBiofilms cost the U.S. billions of dollars every year due to human and animal infections, product contamination, and biofouling of membranes. Deep subsurface biofilms can be used for enhanced oil recovery and carbon sequestration in addition to bioremediation of contaminants in groundwater. Despite widespread implications of biofilms, the underlying hydrodynamics of bacterial aggregation that eventually leads to formation of biofilm streamers are currently unknown. Intellectual Merit: Properties of bacteria-produced extracellular polymeric substances consisting of a filamentous network of macromolecules surrounded in a fluid play an important role in biofilm formation. In order to understand biofilm formation and growth, the dynamics of bacterial aggregation at ecologically relevant spatiotemporal scales in the presence of flow while interacting with extracellular polymeric substances must be studied. This is a challenge largely unanswered to date. The proposed research will employ state-of-the-art three-dimensional computational fluid dynamics and experimental techniques to transform our understanding of bacterial aggregation due to flow field, bacteria shape, bacteria motility and rheological properties of extracellular polymer. The literature shows that rigid particles ranging in sizes from microns to centimeters robustly aggregate in different flows of viscoelastic fluids. The proposed research investigates a hypothesis that motile microorganisms in viscoelastic fluids undergo strong hydrodynamic forces that result in their aggregation to the surfaces and/or each other. The fundamental knowledge about the aggregation of bacteria in the presence of flow in such complex fluids can transform our understanding of these microbial processes and advance the ability to control biofilm formation. Broader Impact: The implications of this research extend to important biological, environmental, and oceanographic applications. Understanding of bacterial aggregation and formation of biofilms is crucial for human health and environmental control. Additionally, the ability to systematically investigate the interaction of bacteria using computational fluid dynamics, while capturing its detailed 3D response in complex fluids, is essential for correctly predicting the future state of the pathogen colonization in mucosal tissues and tracts. The proposed activity will significantly contribute to interdisciplinary training of the next generation of scientists and engineers. This grant will provide support for training of two graduate students fostering the development of state-of-the-art tools in the PI's laboratory. A new graduate course will be developed to integrate the research into graduate education. This interdisciplinary research will be used as a platform to attract diverse groups such as women and underrepresented minorities. The PI will lead an engineering education partnership with the Engineering and Technology Magnet Program for the South Bend (Indiana) Community School Corporation at Riley High School that focuses on restoring an aquatic ecosystem of a local creek by controlling Escherichia coli levels. The work will include hands-on experiments and projects for the students with the purpose of reinforcing basic principles of engineering analysis and design. By taking advantage of established articulation relationships, female and underrepresented minority undergraduate students from the all women's Saint Mary's and two Historically Black Colleges will be trained in experimental and mathematical aspects of the proposed research.
1150348Ardekani 生物膜由于人类和动物感染、产品污染和膜生物污染,每年给美国造成数十亿美元的损失。除了地下水污染物的生物修复之外,深层地下生物膜还可用于提高石油采收率和碳封存。尽管生物膜具有广泛的影响,但最终导致生物膜流条形成的细菌聚集的潜在流体动力学目前尚不清楚。智力优点:细菌产生的细胞外聚合物的特性,由包围在液体中的大分子丝状网络组成,在生物膜的形成中发挥着重要作用。为了了解生物膜的形成和生长,必须研究在存在流动的情况下与细胞外聚合物相互作用时在生态相关的时空尺度上细菌聚集的动力学。这是一个迄今为止基本上尚未得到解决的挑战。拟议的研究将采用最先进的三维计算流体动力学和实验技术来改变我们对流场、细菌形状、细菌运动和细胞外聚合物流变特性引起的细菌聚集的理解。文献表明,尺寸从微米到厘米的刚性颗粒在不同的粘弹性流体流中牢固地聚集。拟议的研究调查了一个假设,即粘弹性流体中的运动微生物承受强大的水动力,导致它们聚集到表面和/或彼此聚集。关于细菌在这种复杂流体中流动时聚集的基本知识可以改变我们对这些微生物过程的理解,并提高控制生物膜形成的能力。更广泛的影响:这项研究的影响延伸到重要的生物、环境和海洋学应用。了解细菌聚集和生物膜的形成对于人类健康和环境控制至关重要。此外,使用计算流体动力学系统地研究细菌相互作用的能力,同时捕获其在复杂流体中的详细 3D 响应,对于正确预测病原体在粘膜组织和管道中定植的未来状态至关重要。拟议的活动将极大地促进下一代科学家和工程师的跨学科培训。这笔赠款将为两名研究生的培训提供支持,以促进 PI 实验室最先进工具的开发。将开发一门新的研究生课程,将研究整合到研究生教育中。这项跨学科研究将用作吸引女性和代表性不足的少数群体等不同群体的平台。 PI 将领导与莱利高中南本德(印第安纳州)社区学校公司的工程和技术磁铁计划的工程教育合作伙伴关系,重点是通过控制大肠杆菌水平来恢复当地小溪的水生生态系统。这项工作将包括学生的实践实验和项目,目的是加强工程分析和设计的基本原理。通过利用已建立的衔接关系,来自圣玛丽女子学院和两所历史黑人学院的女性和代表性不足的少数族裔本科生将接受拟议研究的实验和数学方面的培训。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced viscosity for flagella moving in a solution of long polymer chains
降低鞭毛在长聚合物链溶液中移动的粘度
  • DOI:
    10.1103/physrevfluids.3.023101
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhang, Yuchen;Li, Gaojin;Ardekani, Arezoo M.
  • 通讯作者:
    Ardekani, Arezoo M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arezoo Ardekani其他文献

Arezoo Ardekani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arezoo Ardekani', 18)}}的其他基金

Collaborative Research: Stability and dispersion of viscoelastic flows through porous media
合作研究:多孔介质粘弹性流的稳定性和分散性
  • 批准号:
    2141404
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Collaborative research: The effects of fluid flow on flagellar mechanics and microbial motility
合作研究:流体流动对鞭毛力学和微生物运动的影响
  • 批准号:
    1700961
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Accumulation of particles and organisms in density stratified fluids with applications in algal blooms
密度分层流体中颗粒和生物体的积累及其在藻华中的应用
  • 批准号:
    1604423
  • 财政年份:
    2016
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Cloaking in stratified fluids
EAGER:合作研究:分层流体中的隐形
  • 批准号:
    1445672
  • 财政年份:
    2014
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Cloaking in stratified fluids
EAGER:合作研究:分层流体中的隐形
  • 批准号:
    1414581
  • 财政年份:
    2014
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Conference on Active Fluids: Bridging Complex Fluids and Biofluids
活性流体会议:桥接复杂流体和生物流体
  • 批准号:
    1343062
  • 财政年份:
    2013
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
CAREER:Fluid Dynamics of bacterial aggregation and formation of biofilm streamers
职业:细菌聚集和生物膜流形成的流体动力学
  • 批准号:
    1150348
  • 财政年份:
    2012
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Swimming and Settling in Stratified Fluids
合作研究:分层流体中的游泳和沉降
  • 批准号:
    1066545
  • 财政年份:
    2011
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant

相似国自然基金

纳米塑料暴露于生物体液中的凝聚动力学机制研究
  • 批准号:
    42377418
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
柔性电子喷印制造中非牛顿流体液滴生成和冲击动力学研究
  • 批准号:
    11932009
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目
胶体液滴蒸发中多物理效应协同下的颗粒输运动力学跨尺度研究
  • 批准号:
    11902321
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
纳米流体液滴碰撞壁面铺展动力学特性及碳纳米管分布取向机制的研究
  • 批准号:
    51506078
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Discovery Early Career Researcher Award
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Collaborative R&D
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Collaborative R&D
The influences of size reduction of a Total Artificial Heart on fluid dynamics and blood compatibility.
全人工心脏尺寸减小对流体动力学和血液相容性的影响。
  • 批准号:
    2903462
  • 财政年份:
    2024
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了