Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core

合作研究:整个南极深冰芯基于惰性气体和甲烷的气候记录

基本信息

项目摘要

Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today's concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole.The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.
冰芯中捕获的气体揭示了过去大气中温室气体成分的惊人信息,其中包括在过去 80 万年中二氧化碳浓度从未上升到百万分之 300 以上的事实。 这与今天百万分之 400 的浓度形成鲜明对比。 此外,这些气体记录表明,海洋和生态系统等温室气体的天然来源通过在温暖时期增加气体排放而充当了气候变化的放大器。 预计未来还会出现这种放大现象,从而增加人类产生的气体负担。 南极冰芯将在这些先前发现的基础上,扩大气体组,首次包括那些在过去 4 万年里既捕获热量又消耗臭氧的强效微量气体。 目前关于南极冰芯中惰性气体和甲烷的项目将以前所未有的精度改进这一重要记录的年代测定,以便可以利用事件的相对时间来了解痕量气体产生和破坏的机制,并随之而来的气候变化放大。 最终,这些信息将为在我们快速变化的大气背景下对未来大气化学净化机制和气候的预测提供信息。 该奖项还让年轻人对发现和极地研究感到兴奋,有助于培养下一代科学家和教育工作者。 研究生、年轻研究员(Buizert)的教育以及技术人员的培训将增加国家的人力资源基础。 该奖项资助南极 1500m 冰芯的气体年代学建设,使用测量的惰性气体(d15N 和 d40Ar——分别是氮和氩同位素比)和甲烷,并结合处理空气滞留的随机性质和杂质对致密化的作用。 该项目解决了科学认识上的根本差距,这些差距限制了气体年代学的准确性,特别是对冰芯 d15N 的控制以及分层和杂质在冰晶致密化中可能发挥的作用了解甚少。 这些差距将通过研究深部核心部位现代火的气体封闭过程来解决。 这项工作将包括有史以来第一个空气抽吸实验,该实验对取自同一钻孔的岩心的结构特性进行紧密的同位测量。该项目将测试由空气空气 d15N 定义的锁定层位的假设、二氧化碳和甲烷在结​​构上受不渗透层控制,而不渗透层又是由高杂质含量层产生的,其中致密化得到增强。 将使用惰性气体测量来寻找热信号,这可以改善温度记录,有利于冰晶致密化建模。 将在空气和有限数量的深部岩心样本中测量氖气、氩气和氧气,以测试冰期分层是否增强,这可以解释末次冰期观测到的低 d15N。 利用单独的火山和甲烷同步到年代清楚的冰芯来创建独立的冰和气体连接点,将对气体年龄-冰年龄差异进行独立的经验估计,以检查冰晶致密化模型-惰性气体方法的有效性计算气体年龄-冰河年龄差。 这些点还将用于测试南极东部冰芯末次冰期期间出现的异常低 d15N 是否是由于冷杉中的深层空气对流,或者冷杉致密化模型中缺少杂质依赖性所致。 从这些研究中获得的更多物理知识,加上新的高精度测量,将提高南极冰芯气体年代学的准确性,这将增强这个以气体为导向的核心的整体科学回报。 这将有助于澄清大气气体变化和温度的时间,并有助于了解痕量气体之间的生物地球化学反馈。 这些反馈关系到地球系统对人为强迫的未来反应。 臭氧消耗物质将在南极冰芯记录中进行测量,精确的气体年代学将增加价值。 最后,通过寻求对气体截留物理学的更好理解,该项目旨在对冰芯科学产生总体影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Severinghaus其他文献

Jeffrey Severinghaus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Severinghaus', 18)}}的其他基金

Collaborative Research: Using New Ice Cores from Dome C to Test the Assumption of a Constant Galactic Cosmic Ray Flux and Improve Understanding of the Holocene Methane Budget
合作研究:利用 Dome C 的新冰芯测试银河系宇宙射线通量恒定的假设并提高对全新世甲烷收支的理解
  • 批准号:
    2146134
  • 财政年份:
    2023
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
Collaborative Research: REU: Calibrating the Water Isotope Thermometer in Antarctica Using Abrupt Heinrich Event Signatures in the EDML Ice Core
合作研究:REU:利用 EDML 冰芯中的突变海因里希事件特征校准南极洲的水同位素温度计
  • 批准号:
    2315927
  • 财政年份:
    2023
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Novel constraints on air-sea gas exchange and deep ocean ventilation from high-precision noble gas isotope measurements in seawater
合作研究:海水中高精度稀有气体同位素测量对海气交换和深海通风的新限制
  • 批准号:
    1924394
  • 财政年份:
    2019
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
MRI: Development of an Ultra-High-Precision Gas Mass Spectrometer
MRI:超高精度气体质谱仪的开发
  • 批准号:
    1920369
  • 财政年份:
    2019
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability
合作研究:重建南极洲 Law Dome 大气一氧化碳的碳 14 以限制长期羟基自由基变化
  • 批准号:
    1643664
  • 财政年份:
    2018
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area
合作研究:艾伦山蓝冰区早更新世和中更新世气候和大气成分的快照
  • 批准号:
    1744832
  • 财政年份:
    2018
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantifying past water table depth and hydroclimate with dissolved noble gas isotopes in groundwater
合作研究:利用地下水中溶解的惰性气体同位素量化过去的地下水位深度和水文气候
  • 批准号:
    1702704
  • 财政年份:
    2017
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
Rapid Access Ice Drill (RAID) Science Workshop
快速冰钻 (RAID) 科学研讨会
  • 批准号:
    1719246
  • 财政年份:
    2016
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Kr-86 as a Proxy for Barometric Pressure Variability and Movement of the SH Westerlies during the last Deglaciation
合作研究:Kr-86 作为上次冰消期期间南半球西风带气压变化和运动的代理
  • 批准号:
    1543229
  • 财政年份:
    2016
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Phase 2 Development of A Rapid Access Ice Drilling (RAID) Platform for Research in Antarctica
合作研究:用于南极洲研究的快速钻冰 (RAID) 平台的第二阶段开发
  • 批准号:
    1419979
  • 财政年份:
    2014
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant

相似国自然基金

CD22反式结合调控惰性甲状腺乳头状癌肿瘤浸润性B细胞增殖的机制研究
  • 批准号:
    82360612
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
惰性单分子层点击包覆分子印迹膜的构筑及其高选择性分离纯化EGCG的研究
  • 批准号:
    22308126
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机膦催化惰性化学键的转化研究
  • 批准号:
    22371133
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于右手中微子的暴胀、非热轻子生成、惰性中微子暗物质联合研究
  • 批准号:
    12305116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内嵌三维惰性骨架的双相富锂合金作为新型锂负极及其电化学性能研究
  • 批准号:
    22379019
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Understanding the Drivers of Inert Gas Saturation to Better Constrain Ice Core-Derived Records of Past Mean Ocean Temperature
NSFGEO-NERC:合作研究:了解惰性气体饱和的驱动因素,以更好地限制冰芯衍生的过去平均海洋温度记录
  • 批准号:
    2048926
  • 财政年份:
    2021
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Understanding the Drivers of Inert Gas Saturation to Better Constrain Ice Core-Derived Records of Past Mean Ocean Temperature
NSFGEO-NERC:合作研究:了解惰性气体饱和的驱动因素,以更好地限制冰芯衍生的过去平均海洋温度记录
  • 批准号:
    2049359
  • 财政年份:
    2021
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core
合作研究:整个南极深冰芯基于惰性气体和甲烷的气候记录
  • 批准号:
    1443464
  • 财政年份:
    2015
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core
合作研究:整个南极深冰芯基于惰性气体和甲烷的气候记录
  • 批准号:
    1443472
  • 财政年份:
    2015
  • 资助金额:
    $ 41.15万
  • 项目类别:
    Continuing Grant
NIH Phase II-UNCD as Bio-Inert Interface for Anti-Thrombogenicity Applications in
NIH II-UNCD 作为生物惰性界面,用于抗血栓形成应用
  • 批准号:
    8524646
  • 财政年份:
    2011
  • 资助金额:
    $ 41.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了