DMREF: High-Throughput Morphology Prediction for Organic Solar Cells
DMREF:有机太阳能电池的高通量形态预测
基本信息
- 批准号:1434799
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMREF: A High-Throughput Computational Morphology Prediction for Organic PhotovoltaicsZhenan Bao (Stanford), Vijay Pande (Stanford), Michael Toney (SSRL)Non-Technical Description: Organic photovoltaic cells (OPVs) are alternatives to conventional solar cells as they promise low-cost mass production combined with lightweight and flexible applications. In particular, they offer a prospect to provide basic electricity to the millions of people in rural areas of undeveloped countries who lack access to the power grid. Many OPV materials have been reported in the literature, but few have shown efficiencies greater than 8%. The key challenge is to design materials that fulfill all the requirements. A typical OPV consists of a donor and an acceptor blended together. Predicting the nanoscale morphology remains one of the biggest challenge in predicting OPV performance. Therefore, many material combinations and large processing parameter space (e.g. donor/acceptor ratio, solvents, annealing conditions, film thickness) presently need to be screened.Technical Description: This project aims at an integrated research plan for the high throughput morphology prediction of OPV materials. A continuous feedback loop between theory, synthesis and characterization will facilitate the exchange of results and streamline the overall development process. A central theme of this project is to develop high-throughput techniques for computational morphology calculation and experimental characterization. The computational development takes advantage of the massive computing power provided by distributed volunteer computing networks. Pande will retool his massive Folding@home simulation engine (which was originally developed for molecular mechanics/dynamics research on biomolecules) to predict the bulk-heterojunction blend morphology for OPVs. Folding@home has allowed Pande and coworkers to perform calculations that could not be performed before, by allowing them to reach timescales that are thousands to millions of times longer than would be possible by traditional means. Bao will design synthesis routes to prepare model compounds for thin film preparation and comparison with theoretically predicted morphology. Bao and Toney will together perform optoelectronic, structural, and morphological measurements on the compounds. The characterization will establish and employ new high-throughput instrumentation. The experimental data, regardless of positive or negative outcome, will be made available to the theory group where it will be added to a collection of empirical data. The latter is utilized in calibration schemes and provides the parameterization for many of the employed models. Extending this data set will improve the related modeling efforts and their predictive capacity. This in turn will lead to an adjustment of the development processes. An extensive results and reference database will serve as the hub for the information exchange between the three participating groups. The vast amount of data accumulated in the course of this project will provide the foundation for a better understanding of the molecular structure/morphology correlations, and it will be an openly available resource for the OPV community.
DMREF:有机光伏的高通量计算形态预测Zhenan Bao(斯坦福)、Vijay Pande(斯坦福)、Michael Toney(SSRL)非技术描述:有机光伏电池(OPV)是传统太阳能电池的替代品,因为它们承诺低功耗成本大规模生产与轻量级和灵活的应用相结合。特别是,它们提供了向不发达国家农村地区无法接入电网的数百万人民提供基本电力的前景。文献中报道了许多 OPV 材料,但很少有效率超过 8% 的。关键的挑战是设计满足所有要求的材料。典型的 OPV 由混合在一起的供体和受体组成。预测纳米级形态仍然是预测 OPV 性能的最大挑战之一。因此,目前需要筛选许多材料组合和大的工艺参数空间(例如供体/受体比率、溶剂、退火条件、膜厚度)。技术描述:该项目旨在为 OPV 高通量形貌预测提供综合研究计划材料。理论、综合和表征之间的连续反馈循环将促进结果的交流并简化整个开发过程。该项目的中心主题是开发用于计算形态计算和实验表征的高通量技术。计算开发利用了分布式志愿者计算网络提供的巨大计算能力。 Pande 将重新装备他的大型 Folding@home 模拟引擎(最初是为生物分子的分子力学/动力学研究而开发的),以预测 OPV 的体异质结混合形态。 Folding@home 使 Pande 和同事能够执行以前无法执行的计算,其时间尺度比传统方法长数千到数百万倍。 Bao将设计合成路线来制备用于薄膜制备的模型化合物,并与理论预测的形貌进行比较。鲍和托尼将共同对这些化合物进行光电、结构和形态测量。表征将建立并采用新的高通量仪器。实验数据,无论结果是积极还是消极,都将提供给理论小组,并将其添加到经验数据集合中。后者用于校准方案并为许多所使用的模型提供参数化。扩展该数据集将改进相关的建模工作及其预测能力。这反过来又会导致开发流程的调整。广泛的结果和参考数据库将作为三个参与小组之间信息交流的中心。该项目过程中积累的大量数据将为更好地理解分子结构/形态相关性提供基础,并将成为 OPV 社区的公开资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenan Bao其他文献
Biomimetic Sorbents for Selective CO2 Capture Investigators
用于选择性二氧化碳捕获研究人员的仿生吸附剂
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Wilcox;Zhenan Bao;Jiajun He - 通讯作者:
Jiajun He
Rational solvent molecule tuning for high-performance lithium metal battery electrolytes
高性能锂金属电池电解质的合理溶剂分子调节
- DOI:
10.1038/s41560-021-00962-y - 发表时间:
2022-01-01 - 期刊:
- 影响因子:56.7
- 作者:
Zhiao Yu;Paul E. Rudnicki;Zewen Zhang;Zhuojun Huang;Hasan Çelik;Solomon T. Oyakhire;Yuelang Chen;Xian Kong;Sang Cheol Kim;Xin Xiao;Hansen Wang;Yu;G. Kamat;Mun Sek Kim;S. Bent;Jian Qin;Yi Cui;Zhenan Bao - 通讯作者:
Zhenan Bao
Molecular nano-junctions formed with different metallic electrodes
不同金属电极形成的分子纳米结
- DOI:
10.1088/0957-4484/16/4/027 - 发表时间:
2005-04-01 - 期刊:
- 影响因子:3.5
- 作者:
N. Zhitenev;A. Erbe;Zhenan Bao;Weirong Jiang;E. Garfunkel - 通讯作者:
E. Garfunkel
Effect of Spacer Length of Siloxane‐Terminated Side Chains on Charge Transport in Isoindigo‐Based Polymer Semiconductor Thin Films
硅氧烷封端侧链的间隔长度对异靛蓝聚合物半导体薄膜中电荷传输的影响
- DOI:
10.1002/adfm.201500684 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:19
- 作者:
Jianguo Mei;Hung‐Chin Wu;Ying Diao;A. Appleton;Hong Wang;Y. Zhou;Wen;Tadanori Kurosawa;Wen‐Chang Chen;Zhenan Bao - 通讯作者:
Zhenan Bao
Evolution and Interplay of Lithium Metal Interphase Components Revealed by Experimental and Theoretical Studies.
实验和理论研究揭示的锂金属相间成分的演变和相互作用。
- DOI:
10.1021/jacs.3c14232 - 发表时间:
2024-04-17 - 期刊:
- 影响因子:15
- 作者:
Sha Tan;Dacheng Kuai;Zhiao Yu;Saul Perez;Muhammad Mominur Rahman;Kangxuan Xia;Nan Wang;Yuelang Chen;Xiao;Jie Xiao;Jun Liu;Yi Cui;Zhenan Bao;Perla B. Balbuena;Enyuan Hu - 通讯作者:
Enyuan Hu
Zhenan Bao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenan Bao', 18)}}的其他基金
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
- 批准号:
2342272 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
EAGER: Superlattice-induced polycrystalline and single-crystalline structures in conjugated polymers
EAGER:共轭聚合物中超晶格诱导的多晶和单晶结构
- 批准号:
2203318 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
FMRG: Genetically-targeted chemical assembly (GTCA) of functional structures in living cells, tissues, and animals
FMRG:活细胞、组织和动物功能结构的基因靶向化学组装 (GTCA)
- 批准号:
2037164 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
SenSE: Artificial Intelligence-enabled Multimodal Stress Sensing for Precision Health
SenSE:人工智能支持的多模态压力传感,实现精准健康
- 批准号:
2037304 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Patterning of Large Array Organic Semiconductor Single Crystals
大阵列有机半导体单晶的图案化
- 批准号:
1303178 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Materials World Network: Understanding the Design and Characterization of Air-Stable N-Type Charge Transfer Dopants for Organic Electronics
材料世界网络:了解有机电子器件空气稳定 N 型电荷转移掺杂剂的设计和表征
- 批准号:
1209468 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Liquid phase organic transistor sensor platform based on surface sorted semiconducting carbon nanotubes for small molecules and biological targets
基于表面排序半导体碳纳米管的用于小分子和生物目标的液相有机晶体管传感器平台
- 批准号:
1101901 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Single Molecule Devices with Self-Aligned Contacts
具有自对准接触的单分子器件
- 批准号:
1006989 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
2010 Electronic Processes in Organic Materials Gordon Research Conference; Mount Holyoke College; South Hadley, MA; July 25-30, 2010
2010年有机材料电子过程戈登研究会议;
- 批准号:
0968209 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Mechanistic Studies of Carbon Naotube Sorting on Functional Surfaces
功能表面碳纳米管分选机理研究
- 批准号:
0901414 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似国自然基金
空天地协同保障城市应急通信中无人机吞吐量优化方法研究
- 批准号:62301005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向全双工通信系统的高吞吐量编码广播/多播技术研究
- 批准号:62111540270
- 批准年份:2021
- 资助金额:13.5 万元
- 项目类别:国际(地区)合作与交流项目
无线供能通信网的高吞吐量资源分配优化方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
连续变量量子密钥分发系统高吞吐量纠错技术研究
- 批准号:61901425
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高吞吐量移动无源网络传输协议及关键技术
- 批准号:
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:
相似海外基金
Development of Cell Culture Inserts and 3D In Vitro Tissue Models Utilizing Novel Electrospun Scaffolds
利用新型静电纺丝支架开发细胞培养插入物和 3D 体外组织模型
- 批准号:
10697932 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Development of Cell Culture Inserts and 3D In Vitro Tissue Models Utilizing Novel Electrospun Scaffolds
利用新型静电纺丝支架开发细胞培养插入物和 3D 体外组织模型
- 批准号:
10697932 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuous development of nTracer2 and its deployment at NIH image repositories
nTracer2 的持续开发及其在 NIH 图像存储库中的部署
- 批准号:
10726178 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Cell type-specific complement activation and glial reactivity in male and female mice with dietary obesity
饮食性肥胖雄性和雌性小鼠的细胞类型特异性补体激活和神经胶质反应性
- 批准号:
10754112 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别: