Homological commutative algebra, polyhedral structure, and algebraic geometry

同调交换代数、多面体结构和代数几何

基本信息

  • 批准号:
    1440537
  • 负责人:
  • 金额:
    $ 10.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

At the heart of each project in this proposal is a homological question related to combinatorial structure resulting from a group action in geometry. The first projects provide structural results via polyhedral geometry for free resolutions over a polynomial ring and a smooth toric variety. The later projects focus on hypergeometric systems; these are certain systems of linear PDEs that arise naturally from a torus action, or more generally, from a reductive group action, and are expressible through a D-module variant of Koszul homology. In each project, group actions induce algebraic gradings that contain combinatorial and geometric information. This proposal aims to isolate and exploit the induced polyhedral data structures through graded complexes from homological algebra, including free resolutions, Koszul complexes, cellular resolutions, and complexes that compute local cohomology. The projects call on methods from a broad span of mathematical areas, including homological algebra, toric geometry, representation theory, computer algebra, complex analysis, topology, and tropical geometry.This proposal will improve diversity in the mathematical sciences and education in commutative algebra and algebraic geometry, at the undergraduate and graduate levels. Specifically, it contributes to broader impacts in three ways: mentoring undergraduate and graduate students, with special attention to female students; development of a graduate course and other opportunities for learning and dissemination; and software development to bring universal access to computational advances that result from current research. The PI has a history of commitment to these activities and is currently organizing a mentoring groups for women, compiling lectures aimed at graduate students, presenting at and organizing conferences, and developing computer algebra software.
该提案中每个项目的核心都是一个与几何中群体行为产生的组合结构相关的同调问题。第一个项目通过多面体几何提供结构结果,以实现多项式环和平滑复曲面品种的自由分辨率。后来的项目重点关注超几何系统;这些是某些线性偏微分方程组,它们自然地由环面作用产生,或更一般地,由还原群作用产生,并且可以通过 Koszul 同调的 D 模变体来表达。在每个项目中,群体行动都会产生包含组合和几何信息的代数分级。该提案旨在通过同调代数的分级复形(包括自由分辨率、Koszul 复形、元胞分辨率和计算局部上同调的复形)来分离和利用诱导多面体数据结构。这些项目需要广泛的数学领域的方法,包括同调代数、环面几何、表示论、计算机代数、复分析、拓扑和热带几何。该提案将提高数学科学和交换代数和数学教育的多样性。代数几何,本科生和研究生水平。具体来说,它通过三个方式产生更广泛的影响:指导本科生和研究生,特别关注女学生;开发研究生课程和其他学习和传播机会;和软件开发,使人们能够普遍获得当前研究成果的计算进步。 PI 一直致力于这些活动,目前正在组织女性辅导小组、编写针对研究生的讲座、出席和组织会议以及开发计算机代数软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christine Berkesch其他文献

Christine Berkesch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christine Berkesch', 18)}}的其他基金

Conference: Gender Equity in the Mathematical Study (GEMS) of Commutative Algebra
会议:交换代数数学研究(GEMS)中的性别平等
  • 批准号:
    2332592
  • 财政年份:
    2023
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
Graduate Meeting on Combinatorial Commutative Algebra
组合交换代数研究生会议
  • 批准号:
    2206872
  • 财政年份:
    2022
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
An Upper Midwest Commutative Algebra Conference
上中西部交换代数会议
  • 批准号:
    1953962
  • 财政年份:
    2020
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
Multigraded Methods for Syzygies, Arrangements, and Differential Operators
Syzygies、排列和微分算子的多级方法
  • 批准号:
    2001101
  • 财政年份:
    2020
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
Graduate Workshop in Commutative Algebra for Underrepresented Minorities
少数族裔交换代数研究生研讨会
  • 批准号:
    1908799
  • 财政年份:
    2019
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
An Upper Midwest Commutative Algebra Conference
上中西部交换代数会议
  • 批准号:
    1744247
  • 财政年份:
    2017
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
Homological Commutative Algebra and Group Actions in Geometry
几何中的同调交换代数和群作用
  • 批准号:
    1661962
  • 财政年份:
    2017
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Continuing Grant
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
  • 批准号:
    1700748
  • 财政年份:
    2017
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
Conference:Upper Midwest Commutative Algebra Colloquium; University of Wisconsin; November 14, 2015; and University of Minnesota - April, 2016
会议:上中西部交换代数座谈会;
  • 批准号:
    1549892
  • 财政年份:
    2015
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
Homological commutative algebra, polyhedral structure, and algebraic geometry
同调交换代数、多面体结构和代数几何
  • 批准号:
    1303083
  • 财政年份:
    2013
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant

相似国自然基金

非交换域中多元算子组的数值不变量及相关代数结构
  • 批准号:
    11326105
  • 批准年份:
    2013
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
次对角代数与非交换Hp空间结构分析
  • 批准号:
    11371233
  • 批准年份:
    2013
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
多复变量函数空间上斜Toeplitz算子的代数性质
  • 批准号:
    11301046
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
多重调和Bergman空间上Toeplitz算子的代数性质的研究
  • 批准号:
    11201052
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
非交换投射概形及范畴等价性
  • 批准号:
    19571054
  • 批准年份:
    1995
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目

相似海外基金

Homological Commutative Algebra and Symmetry
同调交换代数和对称性
  • 批准号:
    2302341
  • 财政年份:
    2023
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Continuing Grant
CAREER: Problems in Commutative and Homological algebra
职业:交换代数和同调代数问题
  • 批准号:
    2236983
  • 财政年份:
    2023
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Continuing Grant
Conference on Homological Commutative Algebra and Related Topics
同调交换代数及相关主题会议
  • 批准号:
    2152724
  • 财政年份:
    2021
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Standard Grant
New Structures in Homological Commutative Algebra
同调交换代数的新结构
  • 批准号:
    1902123
  • 财政年份:
    2019
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Continuing Grant
Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
  • 批准号:
    1700985
  • 财政年份:
    2017
  • 资助金额:
    $ 10.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了