Collaborative Research: Chemical Control of Polymer/PbS Blends for PV Applications

合作研究:光伏应用聚合物/PbS 混合物的化学控制

基本信息

  • 批准号:
    1437016
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

Collaborative PI Names: Moule (Lead), Ganapathysubramanian, Ginger Proposal Numbers: 1436273 - 1437636 - 1437016 The sun represents the most abundant potential source of pollution-free energy on earth. Solar cells for conversion of light to electricity based on organic polymers integrated into a photovoltaic (PV) device offer a potentially low-cost route for renewable electricity production if the solar energy conversion efficiency can be improved. The key to improving the efficiency of organic polymer based solar cells is to better understand the molecular arrangement of the materials within the polymer film. This project will apply novel electron microscopy tools to understand how materials processing affects the three-dimensional arrangement of materials in polymer/nanoparticle films designed for photovoltaic (PV) applications. Mixtures of low-cost lead sulfide (PbS) nanoparticles with electrically conducting polymers will be studied because these mixtures have shown recent high photovoltaic efficiency, and because these materials have high imaging contrast by electron microscopy. The electron tomography will generate three dimensional concentration maps of materials within the mixture. These maps will be used to correlate processing conditions to material arrangement within the polymer/nanoparticle film. This information will then be correlated to device performance in order to identify strategies for making better solar cells based on organic polymers. The work will be carried out by a collaborative team that will simultaneously advance the science of polymer/nanoparticle film fabrication, three dimensional electron microscope imaging, and computational analysis of the images to reveal nanoscale structure. This collaborative approach has the potential uncover the structural origin of optical and electronic properties that cannot be measured by any other technique. With respect to education and activities for broadening participation, the project will provide a diverse set of outreach and educational opportunities that include interaction with children through the Boys and Girls Scouts and 4H, public education at well attended local festivals, inclusion of research material in classes, and retention of female engineering students. Technical Description This project will develop and use new electron tomography tools to understand how materials processing affects the three-dimensional arrangement of materials in hybrid polymer/nanoparticle films designed for photovoltaic (PV) applications. Mixtures of low-cost lead sulfide (PbS) nanoparticles with electrically conducting polymers will be studied because these mixtures have shown recent high photovoltaic efficiency, and because these materials have high imaging contrast by electron microscopy. The electron microscopy tool is based on high-angle annular dark-field scanning electron tomography (HAADF-ET) combined with the discrete algebraic reconstruction technique (DART) to generate three-dimensional (3D) material concentration maps with resolution of less than three cubic nanometers for the hybrid organic/inorganic photovoltaic materials. Development of morphology descriptors of the 3D data, including features like the number of phases, concentration ratio in each phase, domain size, domain connectivity, tortuosity of pathways, anisotropy and domain surface area will be measured using graph-based analysis. This information will be used to correlate morphology, structural heterogeneity, and physical distribution of recombination sites in mixed organic/inorganic electronic films to optoelectronic properties and photovoltaic performance. With respect to education and activities for broadening participation, the project will provide a diverse set of outreach and educational opportunities that include interaction with children through the Boys and Girls Scouts and 4H, public education at well attended local festivals, inclusion of research material in classes, and retention of female engineering students.
协作PI名称:Moule(Lead),Ganapathysubramanian,Ginger提案编号:1436273-1437636-1437016太阳代表了地球上无污染能量的最丰富的潜在能源。如果可以提高太阳能转化效率,则基于集成到光伏(PV)设备中的有机聚合物(PV)设备的有机聚合物将其转化为电力的太阳能电池提供了潜在的低成本途径。提高有机聚合物太阳能电池效率的关键是更好地了解聚合物膜中材料的分子排列。该项目将应用新颖的电子显微镜工具来了解材料处理如何影响专为光伏(PV)应用设计的聚合物/纳米颗粒膜中材料的三维布置。将研究低成本硫化物(PBS)纳米颗粒与电导聚合物的混合物,因为这些混合物最近显示了最近的高光伏效率,并且由于这些材料与电子显微镜的成像对比度很高。电子断层扫描将在混合物内生成材料的三维浓度图。这些地图将用于将处理条件与聚合物/纳米颗粒膜中的材料排列相关联。然后,此信息将与设备性能相关,以确定基于有机聚合物制造更好的太阳能电池的策略。这项工作将由一个协作团队进行,该团队将同时推进聚合物/纳米颗粒膜制造,三维电子显微镜成像以及图像的计算分析以揭示纳米级结构的计算分析。这种协作方法具有可能无法通过任何其他技术来衡量的光学和电子特性的结构来源。关于扩大参与的教育和活动,该项目将提供各种各样的外展和教育机会,包括通过男孩和女孩童子军与儿童互动,4H,参加当地良好的公共教育,在课堂上包括研究材料以及保留女性工程学生。技术描述该项目将开发和使用新的电子断层扫描工具,以了解材料处理如何影响用于光伏(PV)应用的混合聚合物/纳米颗粒膜中材料的三维布置。将研究低成本硫化物(PBS)纳米颗粒与电导聚合物的混合物,因为这些混合物最近显示了最近的高光伏效率,并且由于这些材料与电子显微镜的成像对比度很高。电子显微镜工具基于高角度的环形暗场扫描电子层造影术(HAADF-ET)与离散代数重建技术(DART)相结合,可生成三维(3D)材料浓度图,并分辨出较小的三次纳米纳米的分辨率,用于氢纳米的三次纳米纳米材料。 3D数据的形态描述符的开发,包括诸如相位数,域大小,域的连接,途径,途径,各向异性和域表面积之类的特征。该信息将用于将混合有机/无机电子膜中重组位点的形态,结构异质性和物理分布相关联,与光电特性和光伏性能相关联。关于扩大参与的教育和活动,该项目将提供各种各样的外展和教育机会,包括通过男孩和女孩童子军与儿童互动,4H,参加当地良好的公共教育,在课堂上包括研究材料以及保留女性工程学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ginger其他文献

David Ginger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ginger', 18)}}的其他基金

What Controls Kinetics in Organic Mixed Conductors for Neuromorphic Computing and Beyond?
用于神经形态计算及其他领域的有机混合导体的动力学控制是什么?
  • 批准号:
    2309577
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
STC: Center for Integration of Modern Optoelectronic Materials on Demand
STC:现代光电材料按需集成中心
  • 批准号:
    2019444
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Probing Ion Injection in Organic Electrochemical Transistors
探测有机电化学晶体管中的离子注入
  • 批准号:
    2003456
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Type I: Data-Driven Analysis of Correlations between Chemical Structure and Electrical
EAGER:I 型:化学结构与电学之间相关性的数据驱动分析
  • 批准号:
    1842708
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Probing Film Morphology and Ionic Transport in Organic Semiconductors
探测有机半导体中的薄膜形态和离子传输
  • 批准号:
    1607242
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Development of a Scanning Probe Microscope for Resolving Fast Local Dynamics in Nanostructured Materials
MRI:开发扫描探针显微镜来解决纳米结构材料中的快速局部动力学
  • 批准号:
    1337173
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Imaging Defect Dynamics in Organic Semiconductor Films
有机半导体薄膜中的缺陷动态成像
  • 批准号:
    1306079
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
The Role of Local Heterogeneity in Organic Semiconductor Performance
局部异质性在有机半导体性能中的作用
  • 批准号:
    1005504
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Morphology-Property Correlations in Conjugated Polymer Blends with Nanoscale Optoelectronic Probes
职业:利用纳米级光电探针了解共轭聚合物共混物的形态-性能相关性
  • 批准号:
    0449422
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NER: Dip-Pen Nanolithographic Templates for Conjugated Polymer Photovoltaic Devices
NER:共轭聚合物光伏器件的浸笔纳米光刻模板
  • 批准号:
    0403446
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于强化学习的海洋环境适配水声协作网络路由关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于强化学习的海洋环境适配水声协作网络路由关键技术研究
  • 批准号:
    62271423
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于自学习通信的多机器人系统深度强化学习协作策略研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自学习通信的多机器人系统深度强化学习协作策略研究
  • 批准号:
    62103104
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于多智能体强化学习的大规模协作关键技术研究
  • 批准号:
    61906027
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322899
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了