Special Topics in Dynamical Systems: A New Mathematical Framework for the Design of Switching and Continuous Control Strategies
动力系统专题:切换和连续控制策略设计的新数学框架
基本信息
- 批准号:1436856
- 负责人:
- 金额:$ 18.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Special Topics in Dynamical Systems: A New Mathematical Framework for the Design of Switching and Continuous Control StrategiesResearchers often change a physical process by manipulating an external parameter to get the response they desire. It is hard to create a controller that can continuously change the external parameter to get the desired results, so often controllers have only a limited amount of options. This limited option system is called a switching control. For example, in an anti-lock braking system, the controller can either open or close valves completely to relieve pressure in the brakes rather than by degrees. While the mathematics of each of these stages is simple, the design of interplay between the two valves is a challenging mathematical problem. This project provides the knowledge that engineers will use when designing switching control strategy that move the dynamics toward a required robust regime. Not only will this project improve designs for simple systems like anti-lock braking systems, but also in complex systems like a robot walking on two legs. When a robot walks on two legs, it must be able to change its center of mass, alternate leg and knee motion and account for the nearly infinite number of repeated collisions the feet have with the ground. In addition to implications in the robotics and automotive industry, the theory developed in this project is relevant in fluid mechanics (wind and river flow, where the control is continuous, but nonsmooth), ecology (grazing management), and medicine (intermittent therapies, such as hormone therapies) where, as in robotics, the systems are complex. This project offers training for mathematics students interested in collaboration with researchers in other fields. The project will investigate the intrinsically nonsmooth (i.e. new) aspects of the dynamics of differential equations with nondifferentiable right-hand terms. The current theory is incapable to predict the emergence (bifurcation) of complex oscillations, if the points of discontinuity of the right-hand side (switchings) form discontinuous manifolds, if the trajectories feature infinite number of discontinuities (collisions) in finite time (chattering), if a trajectory develops into a funnel of curves over time (i.e. makes long-term prediction impossible), or if one smooths the discontinuities of the model (i.e. introduces the slow-fast dynamics). These four mechanisms describe the four objectives of the project because they are the four central routes for intrinsically nonsmooth attractive regimes to occur in nonsmooth control applications. To achieve the goal, such chapters of the field as dimension reduction, normal forms and bifurcation theory will be significantly advanced.
动力系统专题:用于设计切换和连续控制策略的新数学框架研究人员经常通过操纵外部参数来改变物理过程以获得他们想要的响应。很难创建一个可以连续改变外部参数以获得所需结果的控制器,因此控制器通常只有有限数量的选项。这种有限的选择系统称为切换控制。例如,在防抱死制动系统中,控制器可以完全打开或关闭阀门以释放制动器中的压力,而不是逐渐释放压力。虽然每个阶段的数学都很简单,但两个阀门之间相互作用的设计是一个具有挑战性的数学问题。该项目提供了工程师在设计开关控制策略时将使用的知识,该策略将动态转向所需的稳健状态。该项目不仅将改进防抱死制动系统等简单系统的设计,还将改进两条腿行走的机器人等复杂系统的设计。当机器人用两条腿行走时,它必须能够改变其质心,交替腿部和膝盖运动,并解释脚与地面几乎无限次的重复碰撞。除了对机器人和汽车行业的影响外,该项目中开发的理论还与流体力学(风和河流的流动,控制是连续的,但不平滑)、生态学(放牧管理)和医学(间歇性治疗、例如激素疗法),就像机器人技术一样,系统很复杂。该项目为有兴趣与其他领域的研究人员合作的数学学生提供培训。该项目将研究具有不可微右手项的微分方程动力学本质上不光滑(即新的)方面。当前的理论无法预测复杂振荡的出现(分叉),如果右侧的不连续点(切换)形成不连续流形,如果轨迹在有限时间内具有无限数量的不连续性(碰撞)(颤振) ),如果轨迹随着时间的推移发展成曲线漏斗(即使得长期预测变得不可能),或者如果平滑模型的不连续性(即引入了慢-快动态)。这四种机制描述了该项目的四个目标,因为它们是在非光滑控制应用中发生本质上非光滑吸引机制的四个中心途径。为了实现这一目标,降维、范式和分岔理论等领域的章节将得到显着推进。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations
- DOI:10.1016/j.nahs.2018.05.007
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:M. Kamenskiĭ;O. Makarenkov;Lakmi Niwanthi Wadippuli;Paul Raynaud de Fitte
- 通讯作者:M. Kamenskiĭ;O. Makarenkov;Lakmi Niwanthi Wadippuli;Paul Raynaud de Fitte
Dwell time for local stability of switched affine systems with application to non-spiking neuron models
- DOI:10.1016/j.aml.2018.06.026
- 发表时间:2018-12-01
- 期刊:
- 影响因子:3.7
- 作者:Makarenkov,Oleg;Phung,Anthony
- 通讯作者:Phung,Anthony
Dwell time for switched systems with multiple equilibria on a finite time-interval
- DOI:
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:O. Makarenkov;A. Phung
- 通讯作者:O. Makarenkov;A. Phung
Bifurcations of Finite-Time Stable Limit Cycles from Focus Boundary Equilibria in Impacting Systems, Filippov Systems, and Sweeping Processes
冲击系统、Filippov 系统和扫掠过程中有限时间稳定极限环与焦点边界平衡的分岔
- DOI:10.1142/s0218127418501262
- 发表时间:2018
- 期刊:
- 影响因子:2.2
- 作者:Makarenkov, Oleg;Niwanthi Wadippuli Achchige, Lakmi
- 通讯作者:Niwanthi Wadippuli Achchige, Lakmi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleg Makarenkov其他文献
Formation of a nontrivial finite-time stable attractor in a class of polyhedral sweeping processes with periodic input
一类具有周期输入的多面体扫描过程中非平凡有限时间稳定吸引子的形成
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
I. Gudoshnikov;Oleg Makarenkov;Dmitrii Rachinskii - 通讯作者:
Dmitrii Rachinskii
Oleg Makarenkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleg Makarenkov', 18)}}的其他基金
Collaborative Research: A Sweeping Process Framework to Control the Dynamics of Elastoplastic Systems
协作研究:控制弹塑性系统动力学的全面过程框架
- 批准号:
1916876 - 财政年份:2019
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
相似国自然基金
基于图机器学习的学科交叉主题识别与预测研究
- 批准号:72374202
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向财经应用的事件及其主题抽取
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于弱信号时效网络演化分析的变革性科技创新主题早期识别方法研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
知识驱动的神经主题模型方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
主题与策略感知的在线心理支持自动问答研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Conference: Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
会议:宾夕法尼亚州立大学动态系统及相关主题半年度研讨会
- 批准号:
2230142 - 财政年份:2022
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1800679 - 财政年份:2018
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413603 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
- 批准号:
1401224 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413060 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Continuing Grant