A Scalable Roll-to-Roll Printing Approach to Integrating Nanomaterials into High-Performance Devices

将纳米材料集成到高性能设备中的可扩展卷对卷打印方法

基本信息

  • 批准号:
    1435521
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The emergence of a variety of high quality nanoscale materials in the last few decades have brought forth novel tunable properties with which new and improved technologies can be envisioned. Prospects include low-cost solar cells with unprecedented power conversion efficiencies to high-contrast biomedical imaging agents. While high-performance in laboratory scale devices incorporating nanoscale materials have been demonstrated, for many applications such as photovoltaics and displays, scalable manufacturing of high efficiency devices and device arrays is an absolute necessity. Currently, there are no clear pathways to achieving such practical large area, large arrays of complex, high performing structures. This award supports fundamental research to build the necessary foundation for developing a scalable roll-to-roll printing approach to assembling large arrays of nanoscale materials within functioning device architectures. Such an ability to integrate large arrays of nanoscale materials should enable manufacturing of a wide variety of electronic and optoelectronic devices from high-performance solar cells to energy efficient displays and lighting technologies. This multidisciplinary research involving materials, mechanical and manufacturing sciences as well as optoelectronics will provide research opportunities for students from underrepresented groups and promote/enhance engineering education.Heterogeneous integration of various 0D, 1D, and 2D nanomaterials such as quantum dots, carbon nanotubes, and graphene into vertically stacked multilayer structures allows for effective methods of utilizing the unique electrical and optical properties of these nanomaterials in a monolithic architecture. However, well-established fabrication processes such as photolithography are often incompatible with nanomaterials. Dry transfer printing using elastomeric stamps is a potential solution to this incompatibility problem but the nature of kinetically switchable adhesion of elastomers requires different peeling speeds between retrieval and printing steps. This requirement in turn introduces a grand challenge in employing elastomeric stamps to scalable roll-to-roll printing since retrieval and printing need to be carried out with the same roller, thus the same peeling speed. This research aims to explore shape memory polymers as stamp materials to replace kinetic control by stiffness control of dry adhesion and, furthermore, to enhance the adhesion force and switchability. The research team will examine the mechanics of shape memory polymers for transfer printing, investigate the fundamental properties of nanomaterials and interfaces assembled using shape memory polymer and apply the knowledge gained to assemble multilayer stacks consisting of nanomaterials and other relevant device components in a continuous roll-to-roll fashion.
在过去的几十年中,各种高质量的纳米级材料的出现引起了新的可调特性,可以将新的和改进的技术设想。前景包括具有前所未有的功率转化效率对高对比度生物医学成像剂的低成本太阳能电池。尽管已经证明了在纳米级材料的实验室规模设备中的高性能,但对于许多应用,例如光伏和显示器,可扩展的高效率设备和设备阵列的可扩展制造绝对是必需的。当前,没有明确的途径来实现这种实用的大面积,大量的复杂,高性能的结构。该奖项支持基本研究,以建立必要的基础,以开发可扩展的卷到滚动打印方法,以在功能设备架构中组装大量纳米级材料。这种整合大量纳米级材料的能力应使从高性能太阳能电池到节能显示和照明技术的各种电子和光电设备制造。 This multidisciplinary research involving materials, mechanical and manufacturing sciences as well as optoelectronics will provide research opportunities for students from underrepresented groups and promote/enhance engineering education.Heterogeneous integration of various 0D, 1D, and 2D nanomaterials such as quantum dots, carbon nanotubes, and graphene into vertically stacked multilayer structures allows for effective methods of utilizing the unique这些纳米材料在整体建筑中的电气和光学特性。然而,诸如光刻术之类的公认的制造过程通常与纳米材料不相容。使用弹性邮票的干燥传输打印是解决此不兼容问题的潜在解决方案,但是动力学上可切换的弹性体粘附的性质需要在检索和打印步骤之间进行不同的剥离速度。反过来,这项要求在使用弹性邮票上对可扩展的滚动打印中引入了巨大的挑战,因为需要使用相同的滚筒进行检索和打印,从而具有相同的剥离速度。这项研究旨在探索形状的记忆聚合物作为邮票材料,以替代干粘附力的刚度控制,并增强粘附力和切换性。研究团队将检查用于传输印刷的形状记忆聚合物的机制,研究使用形状记忆聚合物组装的纳米材料和接口的基本特性,并应用获得的知识来组装由纳米材料和其他相关设备组成的多层堆栈,以连续滚动到连续的滚动滚动式时尚。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moonsub Shim其他文献

5,6,11,12,17,18‐Hexadehydro‐1,4,7,10,13,16‐hexaethinyltribenzo[a,e,i]cyclododecen: Synthese und CpCo‐katalysierte Cycloisomerisierung zu den ersten superdelokalisierten Oligophenylenen
5,6,11,12,17,18-十六氢-1,4,7,10,13,16-六乙炔基三苯并[a,e,i]环十二烯:合成和CpCo-催化剂环异构体 zu den ersten superdelokalisierten Oligophenenen
  • DOI:
    10.1002/ange.19971091920
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Eickmeier;Heiko Junga;Adam J. Matzger;F. Scherhag;Moonsub Shim;K. Vollhardt
  • 通讯作者:
    K. Vollhardt

Moonsub Shim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moonsub Shim', 18)}}的其他基金

Energy-harvesting Light Source Arrays from Colloidal Double-Heterojunction Nanorods
来自胶体双异质结纳米棒的能量收集光源阵列
  • 批准号:
    2132538
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Surface and Interface Effects on Photovoltaic and Light-Emitting Characteristics of Colloidal Nanocrystal Heterostructures
表面和界面对胶体纳米晶异质结构光伏和发光特性的影响
  • 批准号:
    1808163
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Reconfigurable Continuous Flow Reactor for Manufacturing of Complex Nanomaterials
用于制造复杂纳米材料的可重构连续流反应器
  • 批准号:
    1825356
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Charge Effects on Optoelectronic Properties of Nanorod Heterostructures
电荷对纳米棒异质结构光电性能的影响
  • 批准号:
    1507170
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Synthesis of and Charge Transfer Dynamics in Type II Nanorod Heterostructures
II 型纳米棒异质结构的合成和电荷转移动力学
  • 批准号:
    1153081
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Molecular Interfaces to Heterostructures of Low Dimensional Carbon
低维碳异质结构的分子界面
  • 批准号:
    0905175
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NIRT: Chemically Tunable Nanoelectronic and Nanoelectromechanical Systems
NIRT:化学可调谐纳米电子和纳米机电系统
  • 批准号:
    0506660
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Synthesis, Surface Functionalization and Charge Carrier Injection in 1D Nanostructures
职业:一维纳米结构的合成、表面功能化和载流子注入
  • 批准号:
    0348585
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Nanocrystal/Polymer Hybrid Building Blocks for Nanofabrication
用于纳米加工的纳米晶体/聚合物混合构件
  • 批准号:
    0322299
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

卷对卷印刷电子PET膜的分数阶动力学建模及控制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
纳米金属氧化物的功能化接枝修饰及对印刷有机光伏界面电荷输运特性的调控
  • 批准号:
    51773224
  • 批准年份:
    2017
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
卷对卷印刷制备大面积钙钛矿太阳能电池的活性层薄膜形貌调控研究
  • 批准号:
    51673214
  • 批准年份:
    2016
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
协同分散石墨烯为模板原位聚合湿法加工制备透明电极及其柔性光伏器件
  • 批准号:
    51672121
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
面向多层卷对卷印刷电子设备的精密对准技术研究
  • 批准号:
    51475017
  • 批准年份:
    2014
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ino-Flex: Enabling ultra-large area ultra-parallel roll-to-roll transfer printing of high performance flexible inorganic semiconductor devices
Ino-Flex:实现高性能柔性无机半导体器件的超大面积超并行卷对卷转印
  • 批准号:
    EP/V051792/1
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative Research and Development Grants
CAREER: Modeling the Roll-to-Roll Soft Lithography Printing Process Through Deep Learning and Real-time Sensing
职业:通过深度学习和实时传感对卷对卷软光刻印刷过程进行建模
  • 批准号:
    1942185
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Manufacturing USA: Precision Alignment of Roll-to-Roll Printing of Flexible Paper Electronics Through Modeling and Virtual Sensor-based Control
美国制造:通过建模和基于虚拟传感器的控制实现柔性纸电子产品卷对卷印刷的精确对准
  • 批准号:
    1907250
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了