MRI: Acquisition of a 3D X-Ray Computed Tomography Scanner for Imaging of Large Size Infrastructure, Biological, and Mechanical Components

MRI:购买 3D X 射线计算机断层扫描仪,用于对大型基础设施、生物和机械部件进行成像

基本信息

  • 批准号:
    1428436
  • 负责人:
  • 金额:
    $ 98.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

X-ray computed tomography (CT) allows researchers to see inside structural, mechanical, electronic or biological parts and produce high-resolution 3D images of the parts, inside and out. This technology has evolved to enable X-ray CT scanning of larger parts made from denser materials while achieving high resolution at fast scan times. These advances have made x-ray CT a unique tool for researchers in disciplines from civil engineering to biology. This Major Research Instrumentation (MRI) award supports the acquisition of an advanced X-ray CT scanner capable of scanning parts as large as 1.2 meters tall and 0.84 meters wide at very high resolutions. A multidisciplinary team of University of Washington (UW) researchers has been assembled to acquire the instrument, including researchers from civil engineering, mechanical engineering, aeronautical engineering, anthropology, the Washington Nanofabrication Facility (WNF)/Electrical Engineering, biology, earth and space sciences, material science, and the Burke Museum which is a natural history and cultural museum on the campus of the University of Washington. The research enabled by this instrument is as broad and multidisciplinary as the research team and it will help to drive innovations in these diverse disciplines.The imaging capability provided by the x-ray CT will allow structural engineering researchers to perform tests of large-scale structural subassemblages and then image the key components following the tests; enabling discovery of damage not visible from the surface. X-ray CT will be used to monitor damage progression in reinforced concrete bond zones, improving understanding and modeling of bond zone behavior. Researchers in composite structures used in aero, mechanical and civil applications will image composite components to investigate barely visible and subsurface defects, and failure initiation. These data will help develop and validate numerical models that rely on accurate characterization of voids and variations in fiber angles across laminate layers, advance composite micromechanics and failure theories for composites, and improve bond quality. Researchers in 3D printing will use the X-ray CT for nondestructive inspection of both internal and external geometry of 3D printed parts. They will also explore the effectiveness of X-ray CT evaluation of spatially controlled material composition of the 3D printed parts which is not otherwise feasible. Researchers in biological systems will image large portions of skeletal remains, fossils, and recently deceased animals to determine exact geometries; these data will enable the development of bio-mechanical models and investigation of the function of biological structures. Researchers in electrical engineering and nanofabrication will use the instrument in failure analysis of electronics fabricated with advanced techniques. The instrument will become a key piece of research infrastructure for the University of Washington and the Pacific Northwest.
X射线计算机断层扫描(CT)允许研究人员看到内外结构,机械,电子或生物部位的内部,并在内外产生零件的高分辨率3D图像。这项技术已经发展为启用X射线CT扫描,对较大材料制成的较大零件,同时在快速扫描时间实现高分辨率。这些进步使X射线CT成为从土木工程到生物学学科研究人员的独特工具。这项主要的研究仪器奖(MRI)奖支持获得高级X射线CT扫描仪,该扫描仪能够扫描高达1.2米高的零件,并在非常高分辨率下宽度为0.84米。华盛顿大学(UW)研究人员的跨学科团队已经组装以获取该乐器,包括土木工程,机械工程,航空工程,人类学,华盛顿纳米制造设施(WNF)/电气工程,生物学,地球和太空科学的研究人员,材料科学和伯克博物馆,这是华盛顿大学校园上的自然历史和文化博物馆。该乐器对此启用的研究与研究团队一样广泛而多学科,它将有助于推动这些多样化学科的创新。X射线CT提供的成像能力将使结构工程研究人员能够进行大规模结构性测试。子组合,然后在测试之后对密钥组件进行映像;从表面发现不可见的损害。 X射线CT将用于监测钢筋混凝土键区中的损伤进程,从而改善对键区行为的理解和建模。在空气,机械和民用应用中使用的复合结构中的研究人员将对复合组件进行成像,以研究几乎看不见的和地下缺陷以及失败的启动。这些数据将有助于开发和验证数值模型,这些模型依赖于对层压层层次的空隙和纤维角度变化的准确表征,提前复合微力学和复合材料的失败理论以及提高键质量。 3D打印中的研究人员将使用X射线CT进行3D印刷零件的内部和外部几何形状的无损检查。他们还将探讨3D打印零件的空间控制材料组成的X射线CT评估的有效性,这是不可行的。生物系统中的研究人员将对大部分骨骼遗物,化石和最近死亡的动物进行成像,以确定确切的几何形状。这些数据将使生物力学模型的发展和生物结构功能的研究。电气工程和纳米制作的研究人员将使用该仪器对用高级技术制造的电子产品进行故障分析。该工具将成为华盛顿大学和西北太平洋大学的重要研究基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Berman其他文献

Evaluating an equity-focused approach to assess climate resilience and disaster priorities through a community survey
通过社区调查评估以公平为中心的方法来评估气候复原力和灾害优先事项
  • DOI:
    10.1371/journal.pone.0302106
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Sam Lovell;Jamie Vickery;Paulina López;Alberto J Rodríguez;B. J. Cummings;Kathleen Moloney;Jeffrey Berman;Ann Bostrom;T. B. Isaksen;Erika Estrada;Cat Hartwell;Pamela Kohler;C. B. Kramer;Resham Patel;Amy Schnall;Mary Hannah Smith;Nicole A. Errett
  • 通讯作者:
    Nicole A. Errett
Bridging underrepresented disaster scholars and national science foundation-funded resources
为代表性不足的灾害学者和国家科学基金会资助的资源架起桥梁
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Cassandra Jean;Jamie Vickery;Joseph Wartman;Jeffrey Berman;Nicole A. Errett
  • 通讯作者:
    Nicole A. Errett
Why do we keep missing left circumflex artery myocardial infarctions?
为什么我们总是忽略左回旋动脉心肌梗死?
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Ryan Geffin;J. Triska;Salim N. Najjar;Jeffrey Berman;MacKenzie Cruse;Y. Birnbaum
  • 通讯作者:
    Y. Birnbaum

Jeffrey Berman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Berman', 18)}}的其他基金

RAPID/Collaborative Research: Performance of Low-Rise Large-Volume Buildings in Florida during 2018 Hurricane Michael
RAPID/协作研究:2018 年迈克尔飓风期间佛罗里达州低层大体量建筑的性能
  • 批准号:
    1904327
  • 财政年份:
    2018
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Standard Grant
Collaborative Research: A Resilience-based Seismic Design Methodology for Tall Wood Buildings
合作研究:基于弹性的高层木结构抗震设计方法
  • 批准号:
    1634204
  • 财政年份:
    2016
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Standard Grant
NEESR Planning/Collaborative Research: Engineered Timber Structural Systems for Seismically Resilient Tall Buildings
NEESR 规划/合作研究:抗震高层建筑的工程木结构系统
  • 批准号:
    1344621
  • 财政年份:
    2013
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Structural Integrity of Steel Gravity Framing Systems
合作研究:钢重力框架系统的结构完整性
  • 批准号:
    1000926
  • 财政年份:
    2010
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Standard Grant
NEESR-SG: Smart and Resilient Steel Walls for Reducing Earthquake Impacts
NEESR-SG:用于减少地震影响的智能且有弹性的钢墙
  • 批准号:
    0830294
  • 财政年份:
    2008
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Standard Grant

相似国自然基金

氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Galectin-9促进非小细胞肺癌奥希替尼获得性耐药及免疫逃逸的作用和机制研究
  • 批准号:
    82373361
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向谷氨酰胺转运体ASCT2逆转食管鳞癌对CDK4/6抑制剂获得性耐药分子机制研究
  • 批准号:
    82373360
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXK2-KCNJ2轴在阿帕替尼获得性耐药的甲状腺未分化癌中重塑细胞焦亡微环境的机制研究
  • 批准号:
    82303864
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Continuing Grant
MRI: Track 1 Acquisition of Multi-Material 3D Printer for Additively Manufactured Electronics to Enable Interdisciplinary Research and Education
MRI:第一轨道采购用于增材制造电子产品的多材料 3D 打印机,以实现跨学科研究和教育
  • 批准号:
    2320798
  • 财政年份:
    2023
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Standard Grant
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
  • 批准号:
    10742197
  • 财政年份:
    2023
  • 资助金额:
    $ 98.87万
  • 项目类别:
Volumetric Real-Time MRI at 0.55 Tesla
0.55 特斯拉的体积实时 MRI
  • 批准号:
    10611241
  • 财政年份:
    2023
  • 资助金额:
    $ 98.87万
  • 项目类别:
Equipment:MRI Track 2 Acquisition of a 3D X-ray microscope for advanced specimen-based organismal research
设备:MRI Track 2 购买 3D X 射线显微镜,用于先进的基于标本的有机体研究
  • 批准号:
    2320473
  • 财政年份:
    2023
  • 资助金额:
    $ 98.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了