EAGER:CCF: Transient Architectures for Energy Efficient Computation
EAGER:CCF:节能计算的瞬态架构
基本信息
- 批准号:1417323
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To sustain performance scaling with the continued progression of Moore?s Law in deep nanometer nodes, we must seek new and innovative advances in energy efficient computing architectures. Such advances are central to the effective operation of all modern processors in platforms ranging from mobile devices to data centers and high-performance computing (HPC) machines that drive national initiatives in key areas such as science, finance, and defense. The major determinants of power consumption are voltage and frequency. The continuing need to scale energy efficiency in the presence of time-varying application workloads increases the number of fine grained power states as well as the frequency of power state transitions in future processors. However, rapid and fine-grained power state transitions increases the time spent in power state transitions as a percentage of the execution time. Thus unchallenged, designers will soon be faced with an impossible choice between energy efficiency (increasing frequency of transitions) and performance loss (time spent in making transitions). However, sustaining performance scaling will need concurrent advances in both.Transient architectures developed in this proposal aim to address this challenge. These are processor microarchitectures that can continue to perform useful computation during power state transitions. The challenges lay in the fact that during power state transitions the supply voltage received by a logic circuit is not stable for a finite duration. Conventionally, a synchronous digital circuit cannot operate correctly when the supply voltage is varying, making execution unreliable during this unstable period. The transient architectures aim to perform useful computation even under unstable supply during these power state transitions by employing a unique combination of innovative power regulation circuits, adaptive computational circuits, and processor microarchitecture technologies. The key concepts enable computational circuits to ramp up to full speed operation in concert with supply voltage transition thereby performing useful computation during power state transitions. The operational principles underlying transient architectures will be demonstrated via silicon test chips and micro-architectural simulations. This departure from conventional thinking can transform the state of the practice in the design of power and energy efficient processor microarchitectures leading to new ultra-low power designs with superior energy-performance tradeoffs than the state of the practice.
为了随着摩尔定律在深纳米节点中的持续发展而维持性能扩展,我们必须在节能计算架构方面寻求新的创新进步。 这些进步对于从移动设备到数据中心和高性能计算 (HPC) 机器等平台上的所有现代处理器的有效运行至关重要,这些平台推动了科学、金融和国防等关键领域的国家举措。功耗的主要决定因素是电压和频率。在存在时变应用程序工作负载的情况下,不断需要扩展能源效率,这增加了未来处理器中细粒度电源状态的数量以及电源状态转换的频率。 然而,快速且细粒度的电源状态转换会增加电源状态转换所花费的时间占执行时间的百分比。因此,毫无疑问,设计人员很快将面临能源效率(增加转换频率)和性能损失(转换所花费的时间)之间的不可能选择。然而,维持性能扩展需要两者同时进步。本提案中开发的瞬态架构旨在解决这一挑战。这些处理器微架构可以在电源状态转换期间继续执行有用的计算。挑战在于,在电源状态转换期间,逻辑电路接收到的电源电压在有限的时间内不稳定。传统上,当电源电压变化时,同步数字电路无法正确运行,从而导致在此不稳定期间执行不可靠。瞬态架构旨在通过采用创新功率调节电路、自适应计算电路和处理器微架构技术的独特组合,即使在电源状态转换期间电源不稳定的情况下也能执行有用的计算。这些关键概念使计算电路能够与电源电压转换一起加速到全速运行,从而在电源状态转换期间执行有用的计算。瞬态架构的工作原理将通过硅测试芯片和微架构模拟进行演示。这种与传统思维的背离可以改变功率和节能处理器微架构设计的实践状态,从而带来新的超低功耗设计,并具有比实践状态更优越的能源性能权衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudhakar Yalamanchili其他文献
Sudhakar Yalamanchili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudhakar Yalamanchili', 18)}}的其他基金
XPS:CLCCA: Optimizing Heterogeneous Platforms for Unstructured Parallelism
XPS:CLCCA:优化异构平台的非结构化并行性
- 批准号:
1337177 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CI-ADDO-NEW: Manifold - A Scalable Simulation Infrastructure for Future Many Core Systems
CI-ADDO-NEW:Manifold - 适用于未来多核心系统的可扩展仿真基础设施
- 批准号:
0855110 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
SGER: Dynamic Partitioned Global Address Spaces for Future Large Scale Systems
SGER:未来大型系统的动态分区全局地址空间
- 批准号:
0847991 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Computing in Networks: Active System Area Networks
网络计算:主动系统区域网络
- 批准号:
9876573 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Quality of Service (QoS) Router Architectures for Cluster Interconnects
用于集群互连的服务质量 (QoS) 路由器架构
- 批准号:
9970720 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REG: High Performance Computing for Engineering Applications
REG:工程应用的高性能计算
- 批准号:
9411846 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Adaptive Routing Protocols in Massively Parallel Architectures
大规模并行架构中的自适应路由协议
- 批准号:
9214244 - 财政年份:1993
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
液相法药物共晶制备中CCF/溶剂体系高效筛选方法及共晶成核生长机制研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
莪术醇调控CCF抗酒精性脂肪肝中肝细胞衰老的作用机制
- 批准号:81900531
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
幽门螺杆菌疫苗CCF诱导胃组织驻留型记忆T细胞形成机制及免疫保护作用研究
- 批准号:81971562
- 批准年份:2019
- 资助金额:53 万元
- 项目类别:面上项目
ccf-mtDNA诱导小胶质细胞炎症反应及其影响衰老和肥胖的研究
- 批准号:81670712
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
基于适配子技术和纳米材料信号放大系统的ccf-miRNA电化学检测方法研究
- 批准号:81672108
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
- 批准号:
2337796 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313146 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2415473 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
- 批准号:
2244479 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CCF: AF: Medium: Towards Optimal Pseudorandomness
CCF:AF:中:走向最佳伪随机性
- 批准号:
2312573 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant