NeTS: CIF: Small: Robust and Optimal Design of Interdependent Networks

NeTS:CIF:小型:相互依赖网络的稳健和优化设计

基本信息

  • 批准号:
    1422165
  • 负责人:
  • 金额:
    $ 45.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Interdependent systems, such as the smart-grid, are rapidly emerging as the underpinning technology for major industries in the 21st century. Such systems are often more fragile in the face of node failures, attacks, and natural hazards than their isolated counterparts. This is because failures in one network may propagate to other networks and vice versa, leading to a cascade of failures that can potentially collapse the entire infrastructure. Mitigating these risks is critical for the successful development and evolution of many modern systems including the smart-grid. Traditional network science focuses on single networks, and thus lacks the methods and tools necessary to address vulnerabilities of even simple interdependent networks. This project aims to advance the state-of-the-art in modelling, controlling, and optimizing the robustness of interdependent networks by exploring several novel research directions. The first phase targets a study of robustness of interdependent networks under various topologies when nodes in one network may depend on more than one node of another network, and vice versa, aiming to characterize the critical fraction of nodes whose failure will lead to the collapse of the entire system. This also exposes the trade-off between network robustness and the number of inter-connections (or resources) allocated. The study then advances to optimal allocation of support-dependency links to maximize the robustness of the smart-grid, seeking to characterize the distribution that will lead to maximal robustness. The results aim to articulate concrete design guidelines on how available back-up resources should be allocated in order to best sustain i) random node failures; and ii) targeted attacks. Successful completion of the project will require the development of new techniques and approaches in the fields of network science, discrete optimization, and random graph theory, together with acquisition and analysis of real-world data from existing smart-grid networks.Given the sheer size of its market for power transmission and distribution, the US is likely to become a major consumer of smart-grid technology in the near future, especially with the integration of renewable sources and electric vehicles. All of these point to a future where the reliability of the smart grid will become paramount. This research program is specifically designed to have a positive impact on the successful development and the evolution of smart-grids, and is likely to have a positive impact on the reliability of other national infrastructures as well. Research materials will be incorporated into the teaching curricula via a new course, and will be disseminated to broad academic and professional audiences. The project will engage PhD and Masters students in research in an area of national importance, and will include outreach efforts to high schools.
相互依存的系统,例如智能网格,正在迅速成为21世纪主要行业的基础技术。面对节点故障,攻击和自然危害,这种系统通常比孤立的系统更脆弱。这是因为一个网络中的故障可能会传播到其他网络,反之亦然,导致一系列失败,可能会崩溃整个基础架构。减轻这些风险对于许多现代系统(包括智能网格)的成功开发和演变至关重要。传统网络科学专注于单个网络,因此缺乏解决简单相互依存网络的漏洞所需的方法和工具。 该项目旨在通过探索几个新的研究方向来推动建模,控制和优化相互依存网络的鲁棒性的最先进。当一个网络中的节点可能取决于另一个网络的一个以上的节点时,第一阶段是针对各种拓扑结构下相互依存网络的鲁棒性的研究,反之亦然,旨在表征失败会导致失败崩溃的临界节点的关键分数整个系统。这也暴露了网络鲁棒性与分配的连接(或资源)的数量之间的权衡。然后,该研究促进了支持依赖性链接的最佳分配,以最大程度地提高智能网格的鲁棒性,以试图表征会导致最大鲁棒性的分布。结果旨在阐明应该如何分配可用备份资源的具体设计指南,以最好地维持i)随机节点失败; ii)针对性攻击。 该项目的成功完成将需要在网络科学,离散优化和随机图理论领域开发新技术和方法,以及从现有Smart-Grid网络中获取和分析现实世界数据的收购和分析。在其电力传输和分销市场上,美国很可能在不久的将来成为智能电网技术的主要消费者,尤其是随着可再生能源和电动汽车的整合。所有这些都表明,智能电网的可靠性将变得至关重要的未来。该研究计划的专门设计是为了对智能网格的成功发展和演变产生积极影响,并且可能对其他国家基础设施的可靠性产生积极影响。研究材料将通过新课程纳入教学课程,并将被传播到广泛的学术和专业受众中。该项目将吸引博士学位和硕士学生参与国家重要领域的研究,并将包括向高中的外展工作。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Osman Yagan其他文献

Analyzing R-Robustness of Random K-Out Graphs for the Design of Robust Networks
分析随机 K-Out 图的 R 鲁棒性以设计鲁棒网络

Osman Yagan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Osman Yagan', 18)}}的其他基金

CIF: Small: Modeling, Analysis, and Control of Contagion Processes in Networks
CIF:小型:网络中传染过程的建模、分析和控制
  • 批准号:
    2225513
  • 财政年份:
    2022
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: The effects of evolutionary adaptations on the spreading of COVID-19
RAPID:合作研究:进化适应对 COVID-19 传播的影响
  • 批准号:
    2026985
  • 财政年份:
    2020
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
CIF: EAGER: Statistical Inference and Decision-Making With Sequential Samples
CIF:EAGER:使用连续样本进行统计推断和决策
  • 批准号:
    1840860
  • 财政年份:
    2018
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
CIF: Small: Contagion Processes in Multi-layer and Multiplex Networks
CIF:小:多层和多重网络中的传染过程
  • 批准号:
    1813637
  • 财政年份:
    2018
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
CIF: Small: Designing Secure, Reliable, and Resilient Wireless Sensor Networks
CIF:小型:设计安全、可靠且有弹性的无线传感器网络
  • 批准号:
    1617934
  • 财政年份:
    2016
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant

相似国自然基金

SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 45.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了