Collaborative Research: Learning Linkages: Integrating Data Streams of Multiple Modalities and Timescales

协作研究:学习联系:整合多种模式和时间尺度的数据流

基本信息

  • 批准号:
    1418181
  • 负责人:
  • 金额:
    $ 23.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This Research on Education and Learning (REAL) project arises from an October 2014 Ideas Lab on Data-intensive Research to Improve Teaching and Learning. The intentions of that effort were to (1) bring together researchers from across disciplines to foster novel, transformative, multidisciplinary approaches to using the data in large education-related data sets to create actionable knowledge for improving STEM teaching and learning environments in the medium term; and (2) revolutionize learning in the longer term. In this project, researchers from Carnegie-Mellon University, Wested, Arizona State University, and Northwestern University will collaborate to enhance understanding of influences on learning, and improve teaching and learning in high school and middle school STEM classes. To accomplish this, they will leverage the latest tools for data processing and many different streams of data that can be collected in technology-rich classrooms to (1) identify classroom factors that affect learning and (2) explore how to use that data to automatically track development of students' understanding and capabilities over time. Two forces are poised to transform research on learning. First, more and more student work is conducted on computers and online, producing vast amounts of learning-related data. At the same time, advances in computing, data mining, and learning analytics are providing new tools for the collection, analysis, and representation of these data. Together, the available data and analytical tools enable smart and responsive systems that personalize learning experiences for individual learners. The PIs aim to collect highly enriched data that go far beyond typical computer data capture, leveraging the latest tools for data processing to generate new insights about STEM teaching and learning. Working to maximize the potential while mitigating the risks of automated data collection and analysis, they will: (1) collect and integrate diverse sources of data including log files, videos, and written artifacts from across eight different two-week enactments of two different computer supported learning environments (one used in middle school math and one in high school science); and (2) compare analyses of log-file data with analyses of integrated datasets to understand the possibilities and limitations in using log-file data for assessment of student learning and proficiency. The collaborators expect their findings will inform both theories and practical recommendations applicable across a wide range of disciplines and settings.
这项关于教育与学习(REAL)项目的研究源于2014年10月的有关数据密集型研究的想法实验室,以改善教学。这种努力的目的是(1)将研究人员从跨学科中汇集在一起​​,以培养新颖的,变革性的多学科方法,以在与大型教育相关的数据集中使用数据,以创建可行的知识,以改善中等学期的STEM教学和学习环境; (2)从长远来看革新学习。在这个项目中,卡内基 - 梅隆大学,西部,亚利桑那州立大学和西北大学的研究人员将合作,以增强对学习影响的理解,并改善高中和中学STEM课程的教学和学习。 为此,他们将利用最新的工具进行数据处理,以及可以在技术丰富的教室中收集的许多不同数据流来(1)确定影响学习的课堂因素,以及(2)探索如何使用该数据来自动跟踪学生随着时间的推移的理解和能力的发展。两种力量有望改变学习研究。首先,越来越多的学生工作在计算机和在线上进行,产生了大量与学习相关的数据。同时,计算,数据挖掘和学习分析的进步正在为这些数据的收集,分析和表示提供新的工具。可用的数据和分析工具共同实现了为个体学习者个性化学习经验的智能和响应式系统。 PI的目的是收集远远超出典型计算机数据捕获的高度丰富数据,利用最新的工具用于数据处理,以生成有关STEM教学的新见解。致力于最大程度地发挥潜力,同时减轻自动数据收集和分析的风险,他们将:(1)收集和整合来自两个不同计算机支持的学习环境的八个不同的两周不同的两周颁布的数据来源,包括日志文件,视频和书面文物(一种用于中学数学和一个用于中学科学的一项); (2)将日志文件数据的分析与集成数据集的分析进行比较,以了解使用日志文件数据来评估学生学习和熟练程度的可能性和局限性。合作者希望他们的发现将为理论和实用建议提供信息,适用于广泛的学科和设置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

John Stamper其他文献

Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms
使用大型语言模型支持大规模自我反思:课堂随机现场实验的见解
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harsh Kumar;Ruiwei Xiao;Benjamin Lawson;Ilya Musabirov;Jiakai Shi;Xinyuan Wang;Huayin Luo;Joseph Jay Williams;Anna N. Rafferty;John Stamper;Michael Liut
    Harsh Kumar;Ruiwei Xiao;Benjamin Lawson;Ilya Musabirov;Jiakai Shi;Xinyuan Wang;Huayin Luo;Joseph Jay Williams;Anna N. Rafferty;John Stamper;Michael Liut
  • 通讯作者:
    Michael Liut
    Michael Liut
An Automatic Question Usability Evaluation Toolkit
自动问题可用性评估工具包
  • DOI:
    10.48550/arxiv.2405.20529
    10.48550/arxiv.2405.20529
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven Moore;Eamon Costello;H. A. Nguyen;John Stamper
    Steven Moore;Eamon Costello;H. A. Nguyen;John Stamper
  • 通讯作者:
    John Stamper
    John Stamper
Exploring How Multiple Levels of GPT-Generated Programming Hints Support or Disappoint Novices
探索 GPT 生成的多个级别的编程如何提示支持或令新手失望
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruiwei Xiao;Xinying Hou;John Stamper
    Ruiwei Xiao;Xinying Hou;John Stamper
  • 通讯作者:
    John Stamper
    John Stamper
A cluster of nonspecific adverse events in a military reserve unit following pandemic influenza A (H1N1) 2009 vaccination—Possible stimulated reporting?
  • DOI:
    10.1016/j.vaccine.2012.01.072
    10.1016/j.vaccine.2012.01.072
  • 发表时间:
    2012-03-23
    2012-03-23
  • 期刊:
  • 影响因子:
  • 作者:
    Michael M. McNeil;Jorge Arana;Brock Stewart;Mary Hartshorn;David Hrncir;Henry Wang;Mark Lamias;Michael Locke;John Stamper;Jerome I. Tokars;Renata J. Engler
    Michael M. McNeil;Jorge Arana;Brock Stewart;Mary Hartshorn;David Hrncir;Henry Wang;Mark Lamias;Michael Locke;John Stamper;Jerome I. Tokars;Renata J. Engler
  • 通讯作者:
    Renata J. Engler
    Renata J. Engler
共 4 条
  • 1
前往

John Stamper的其他基金

Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
  • 批准号:
    2209819
    2209819
  • 财政年份:
    2022
  • 资助金额:
    $ 23.54万
    $ 23.54万
  • 项目类别:
    Standard Grant
    Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
  • 批准号:
    0714428
    0714428
  • 财政年份:
    2007
  • 资助金额:
    $ 23.54万
    $ 23.54万
  • 项目类别:
    Fellowship
    Fellowship

相似国自然基金

面向多方协作机器学习的安全与隐私保护技术研究
  • 批准号:
    62302192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多模态动态图神经网络的教师在线协作反思测评与干预研究
  • 批准号:
    62307033
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向车联网网络流量数据的多方协作学习风险控制机制研究
  • 批准号:
    62373094
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
在线协作学习中的共享调节机制与干预策略研究
  • 批准号:
    72304083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于强化学习的海洋环境适配水声协作网络路由关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 23.54万
    $ 23.54万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 23.54万
    $ 23.54万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.54万
    $ 23.54万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 23.54万
    $ 23.54万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 23.54万
    $ 23.54万
  • 项目类别:
    Standard Grant
    Standard Grant