EAGER: Photovoltaic Sustained Electrochemical Synthesis of Hybrid Metal/CNT Nanowires

EAGER:混合金属/CNT纳米线的光伏持续电化学合成

基本信息

项目摘要

Chen1417043This work will investigate a photovoltaic initiated and sustained electrochemical deposition process for fabricating hybrid metal/CNT nanowires. It will also study the resultant potential electric conductivity of these metal/CNT nanowires. Nanowires with ultrahigh room temperature conductivities are important for advanced electronics as well as for energy efficient conductors, however pure materials such as metals are prone to electron scattering at the nanoscale. The objectives here will be to investigate and develop a viable fabrication process in photovoltaic assisted deposition of metals onto CNTs to obtain tight bonding and uniform hybrid metal/CNT nanowires. The photovoltaic phenomena of CNTs has been successfully used in solar energy harvesting. Intellectual Merit:The hybrid metal/CNT will ensure both a large free electron density (from the metal) 
and a large mean free path (from the CNT) that will result in ultrahigh conductivity. Conventional fabrication methods, which rely on catalysts may not only introduce impurities 
but also result in non-uniform wires and Shottky barriers are inevitably formed. The PI's fabrication method will result in a photovoltaic sustained electrochemical deposition where no direct electrical connection nor any catalysts are required, and a uniform but tightly bonded metal layer will
 be produced. The experimental work will not only demonstrate the ultrahigh conductivity, but also a significantly reduced size effect in the nanometer range. The experimental work combined with quantum mechanical calculations will provide an understanding of the conduction mechanism of the hybrid metal/CNT nanowires.Broader Impacts :Materials at the nanoscale with high conductivities are important for a broad range of applications. For example, interconnects in nanoelectronics requires low resistivity to increase the calculation speed, reduce the Joule heating and to increase reliability. Electrodes for biomolecular and biomedical studies need low resistivity for low or negligible effects due to the Joule heating. Metals like copper and aluminum are common conductors for electricity but consume about $300B per year due to Joule heating. If successful, this 
work will develop a new material fabrication process and novel hybrid nanowires with ultrahigh conductivity, that will be used as interconnects to reduce the RC delay, and as building blocks to make bulk conductive materials via powder metallurgy to replace copper as conductors in electric systems, including motors, generators, transformers, and electromagnets. This could significantly reduce the Joule heating and reduce the energy consumption and increase the wire?s reliability, 
at the same time. Both graduate and undergraduate students will be involved in this integrated research and education program, and existing courses will be amended to include results from this project.
CHEN1417043这项工作将研究用于制造杂交金属/CNT纳米线的光伏启动和持续的电化学沉积过程。 它还将研究这些金属/CNT纳米线的最终电力电导率。具有超高室温电导率的纳米线对于高级电子设备以及节能导体都很重要,但是纯材料(例如金属)易于纳米级的电子散射。这里的目标是调查并开发金属光伏辅助沉积中的可行制造过程,以获得紧密的键合和均匀的杂化金属/CNT纳米线。 CNT的光伏现象已成功用于太阳能收集。智力优点:混合金属/CNT将确保既有大的自由电子密度(来自金属)
以及一条较大的平均自由路径(来自CNT),这将导致超高电导率。依靠催化剂的常规制造方法不仅可能引入杂质
,而且不可避免地会形成不均匀的电线和易光屏障。 PI的制造方法将导致光伏持续的电化学沉积,无需直接电气连接或任何催化剂,并且均匀但紧密的金属层将
被生产。实验工作不仅将证明超高电导率,而且还将在纳米范围内显着降低尺寸效应。实验性工作与量子机械计算结合使用,将提供对杂交金属/CNT纳米线的传导机制的理解。BRODER的影响:纳米级的材料具有较高的电导率,对于广泛的应用非常重要。例如,纳米电子学的互连需要低电阻率才能提高计算速度,降低焦耳加热并提高可靠性。生物分子和生物医学研究的电极需要低电阻率,才能因焦耳加热而导致的低或可忽略不计。 铜和铝等金属是电力的常见导体,但由于焦耳的加热,每年消耗约300B美元。 If successful, this 
work will develop a new material fabrication process and novel hybrid nanowires with ultrahigh conductivity, that will be used as interconnects to reduce the RC delay, and as building blocks to make bulk conductive materials via powder metallurgy to replace copper as conductors in electric systems, including motors, generators, transformers, and electromagnets.这可以大大减少焦耳的加热并减少能源消耗并同时提高电线的可靠性。研究生和本科生都将参与该综合研究和教育计划,并将对现有课程进行修改以包括该项目的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanfang Chen其他文献

A silicon-on-insulator based micro check valve
一种基于绝缘体硅的微型止回阀
Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel
  • DOI:
    10.1016/j.sna.2005.10.009
  • 发表时间:
    2006-01-26
  • 期刊:
  • 影响因子:
  • 作者:
    Bo Li;Quanfang Chen
  • 通讯作者:
    Quanfang Chen
Preparation and Characterization of High-Voltage Cathode Material LiNi0.5Mn1.5O4 for Lithium Ion Batteries
锂离子电池高压正极材料LiNi0.5Mn1.5O4的制备及表征
  • DOI:
    10.4028/www.scientific.net/msf.953.121
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Chen;Quanfang Chen;Shaoping Zhang;Guoxing Xu;M. Y. Lin;Miaojun Wang;Shen Zhi;Y. Chen;J. Zou;Shiyou Xing
  • 通讯作者:
    Shiyou Xing
Electronic structure and transport properties of carbon nanotube adsorbed with a copper chain
铜链吸附碳纳米管的电子结构和输运特性
  • DOI:
    10.1080/19475411.2013.782906
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengyu Yang;Quanfang Chen
  • 通讯作者:
    Quanfang Chen

Quanfang Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanfang Chen', 18)}}的其他基金

Manufacture of Electrical Conductive Nanocomposites
导电纳米复合材料的制造
  • 批准号:
    1100345
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
BiSn/CNT Nanocomposite as Novel Thermal Interface Material
BiSn/CNT 纳米复合材料作为新型热界面材料
  • 批准号:
    0966908
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SGER: Fabrication of Innovative Cu/CNT Nanowires
SGER:创新铜/碳纳米管纳米线的制造
  • 批准号:
    0813741
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Reinforcing Mechanisms of Carbon Nanotube Metallic Nanocomposites
碳纳米管金属纳米复合材料的增强机制
  • 批准号:
    0700666
  • 财政年份:
    2007
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Novel Brush Plating for In Situ Fabrication of Metallic Nanocomposites
用于金属纳米复合材料原位制造的新型刷镀
  • 批准号:
    0409650
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似国自然基金

西北地区光伏产业可持续发展的稳健决策支持系统研究
  • 批准号:
    72174111
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
全生命周期视角下太阳能光伏的“环境-经济-社会”影响特性与可持续发展协同机制研究
  • 批准号:
    71974129
  • 批准年份:
    2019
  • 资助金额:
    49.5 万元
  • 项目类别:
    面上项目
基于光电入网的电力市场机制研究:博弈行为、稳态突变及经济可持续性效应
  • 批准号:
    71763033
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    地区科学基金项目
反贫困效果评估的理论模型与可持续脱贫路径研究:以光伏扶贫为例
  • 批准号:
    71773119
  • 批准年份:
    2017
  • 资助金额:
    47.0 万元
  • 项目类别:
    面上项目
宽光谱氧化物太阳电池的关键材料挑战及器件研究
  • 批准号:
    91233101
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Heating with light: photonic curing for photovoltaic technologies
光加热:光伏技术的光子固化
  • 批准号:
    EP/Y022270/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
A Proactive Approach to the Recovery and Recycling of Photovoltaic Modules (APOLLO)
积极主动地回收和再循环光伏组件 (APOLLO)
  • 批准号:
    10102451
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    EU-Funded
Postdoctoral Fellowship: CREST-PRP: Investigation and design of Molecular Spintronic photovoltaic devices via Raman Spectroscopy
博士后奖学金:CREST-PRP:通过拉曼光谱研究和设计分子自旋电子光伏器件
  • 批准号:
    2401024
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
  • 批准号:
    2413632
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Novel INFIQ® Lead-Free Infrared Quantum Dot Inks for Photovoltaic Applications
适用于光伏应用的新型 INFIQ® 无铅红外量子点墨水
  • 批准号:
    10064218
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了