EAGER: Photovoltaic Sustained Electrochemical Synthesis of Hybrid Metal/CNT Nanowires
EAGER:混合金属/CNT纳米线的光伏持续电化学合成
基本信息
- 批准号:1417043
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chen1417043This work will investigate a photovoltaic initiated and sustained electrochemical deposition process for fabricating hybrid metal/CNT nanowires. It will also study the resultant potential electric conductivity of these metal/CNT nanowires. Nanowires with ultrahigh room temperature conductivities are important for advanced electronics as well as for energy efficient conductors, however pure materials such as metals are prone to electron scattering at the nanoscale. The objectives here will be to investigate and develop a viable fabrication process in photovoltaic assisted deposition of metals onto CNTs to obtain tight bonding and uniform hybrid metal/CNT nanowires. The photovoltaic phenomena of CNTs has been successfully used in solar energy harvesting. Intellectual Merit:The hybrid metal/CNT will ensure both a large free electron density (from the metal) 
and a large mean free path (from the CNT) that will result in ultrahigh conductivity. Conventional fabrication methods, which rely on catalysts may not only introduce impurities 
but also result in non-uniform wires and Shottky barriers are inevitably formed. The PI's fabrication method will result in a photovoltaic sustained electrochemical deposition where no direct electrical connection nor any catalysts are required, and a uniform but tightly bonded metal layer will
 be produced. The experimental work will not only demonstrate the ultrahigh conductivity, but also a significantly reduced size effect in the nanometer range. The experimental work combined with quantum mechanical calculations will provide an understanding of the conduction mechanism of the hybrid metal/CNT nanowires.Broader Impacts :Materials at the nanoscale with high conductivities are important for a broad range of applications. For example, interconnects in nanoelectronics requires low resistivity to increase the calculation speed, reduce the Joule heating and to increase reliability. Electrodes for biomolecular and biomedical studies need low resistivity for low or negligible effects due to the Joule heating. Metals like copper and aluminum are common conductors for electricity but consume about $300B per year due to Joule heating. If successful, this 
work will develop a new material fabrication process and novel hybrid nanowires with ultrahigh conductivity, that will be used as interconnects to reduce the RC delay, and as building blocks to make bulk conductive materials via powder metallurgy to replace copper as conductors in electric systems, including motors, generators, transformers, and electromagnets. This could significantly reduce the Joule heating and reduce the energy consumption and increase the wire?s reliability, 
at the same time. Both graduate and undergraduate students will be involved in this integrated research and education program, and existing courses will be amended to include results from this project.
Chen1417043这项工作将研究用于制造混合金属/CNT 纳米线的光伏引发和持续电化学沉积过程。 它还将研究这些金属/碳纳米管纳米线的潜在电导率。具有超高室温电导率的纳米线对于先进电子产品以及节能导体非常重要,但是金属等纯材料容易在纳米尺度上发生电子散射。这里的目标是研究和开发一种可行的制造工艺,将金属光伏辅助沉积到碳纳米管上,以获得紧密结合和均匀的混合金属/碳纳米管纳米线。碳纳米管的光伏现象已成功用于太阳能收集。智力优点:混合金属/碳纳米管将确保大的自由电子密度(来自金属)和大的平均自由程(来自碳纳米管),从而产生超高的电导率。依赖催化剂的传统制造方法不仅会引入杂质,而且会导致导线不均匀,并且不可避免地形成肖特基势垒。 PI 的制造方法将产生光伏持续电化学沉积,无需直接电连接,也不需要任何催化剂,并且将形成均匀但紧密结合的金属层。被生产出来。实验工作不仅将展示超高的电导率,而且还将展示纳米范围内尺寸效应的显着减小。实验工作与量子力学计算相结合,将有助于理解混合金属/碳纳米管纳米线的传导机制。 更广泛的影响:具有高电导率的纳米级材料对于广泛的应用非常重要。例如,纳米电子学中的互连需要低电阻率,以提高计算速度、减少焦耳热并提高可靠性。用于生物分子和生物医学研究的电极需要低电阻率,以减少焦耳热造成的影响或可忽略不计。 铜和铝等金属是常见的电导体,但由于焦耳热,每年消耗约 300B 美元。如果成功,这项工作将开发一种新的材料制造工艺和具有超高电导率的新型混合纳米线,它们将用作互连以减少 RC 延迟,并作为构建块通过粉末冶金制造块状导电材料以取代铜作为电力系统中的导体,包括电动机、发电机、变压器和电磁体。这可以显着减少焦耳热,降低能耗,同时提高电线的可靠性。研究生和本科生都将参与这一综合研究和教育计划,现有课程将进行修改,以纳入该项目的成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanfang Chen其他文献
A silicon-on-insulator based micro check valve
一种基于绝缘体硅的微型止回阀
- DOI:
10.1088/0960-1317/14/3/010 - 发表时间:
2004 - 期刊:
- 影响因子:2.3
- 作者:
M. Hu;H. Du;S. Ling;Y. Fu;Quanfang Chen;L. Chow;Bo Li - 通讯作者:
Bo Li
Preparation and Characterization of High-Voltage Cathode Material LiNi0.5Mn1.5O4 for Lithium Ion Batteries
锂离子电池高压正极材料LiNi0.5Mn1.5O4的制备及表征
- DOI:
10.4028/www.scientific.net/msf.953.121 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Zhe Chen;Quanfang Chen;Shaoping Zhang;Guoxing Xu;M. Y. Lin;Miaojun Wang;Shen Zhi;Y. Chen;J. Zou;Shiyou Xing - 通讯作者:
Shiyou Xing
Electronic structure and transport properties of carbon nanotube adsorbed with a copper chain
铜链吸附碳纳米管的电子结构和输运特性
- DOI:
10.1080/19475411.2013.782906 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Chengyu Yang;Quanfang Chen - 通讯作者:
Quanfang Chen
Quanfang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanfang Chen', 18)}}的其他基金
Manufacture of Electrical Conductive Nanocomposites
导电纳米复合材料的制造
- 批准号:
1100345 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
BiSn/CNT Nanocomposite as Novel Thermal Interface Material
BiSn/CNT 纳米复合材料作为新型热界面材料
- 批准号:
0966908 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SGER: Fabrication of Innovative Cu/CNT Nanowires
SGER:创新铜/碳纳米管纳米线的制造
- 批准号:
0813741 - 财政年份:2008
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Reinforcing Mechanisms of Carbon Nanotube Metallic Nanocomposites
碳纳米管金属纳米复合材料的增强机制
- 批准号:
0700666 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Novel Brush Plating for In Situ Fabrication of Metallic Nanocomposites
用于金属纳米复合材料原位制造的新型刷镀
- 批准号:
0409650 - 财政年份:2004
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
西北地区光伏产业可持续发展的稳健决策支持系统研究
- 批准号:72174111
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
全生命周期视角下太阳能光伏的“环境-经济-社会”影响特性与可持续发展协同机制研究
- 批准号:71974129
- 批准年份:2019
- 资助金额:49.5 万元
- 项目类别:面上项目
反贫困效果评估的理论模型与可持续脱贫路径研究:以光伏扶贫为例
- 批准号:71773119
- 批准年份:2017
- 资助金额:47.0 万元
- 项目类别:面上项目
基于光电入网的电力市场机制研究:博弈行为、稳态突变及经济可持续性效应
- 批准号:71763033
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:地区科学基金项目
宽光谱氧化物太阳电池的关键材料挑战及器件研究
- 批准号:91233101
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:重大研究计划
相似海外基金
Heating with light: photonic curing for photovoltaic technologies
光加热:光伏技术的光子固化
- 批准号:
EP/Y022270/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
A Proactive Approach to the Recovery and Recycling of Photovoltaic Modules (APOLLO)
积极主动地回收和再循环光伏组件 (APOLLO)
- 批准号:
10102451 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
Postdoctoral Fellowship: CREST-PRP: Investigation and design of Molecular Spintronic photovoltaic devices via Raman Spectroscopy
博士后奖学金:CREST-PRP:通过拉曼光谱研究和设计分子自旋电子光伏器件
- 批准号:
2401024 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
- 批准号:
2413632 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Novel INFIQ® Lead-Free Infrared Quantum Dot Inks for Photovoltaic Applications
适用于光伏应用的新型 INFIQ® 无铅红外量子点墨水
- 批准号:
10064218 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Collaborative R&D