Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
基本信息
- 批准号:1406622
- 负责人:
- 金额:$ 16.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of spatial statistics is an expanding subset of statistical science with numerous applications in a wide variety of specialties such as geophysical, environmental, ecological and economic sciences. Modern datasets in these sciences often involve multiple variables observed at thousands to millions of irregularly spaced geographical locations. Associated scientific goals include surface estimation, stochastic simulation and statistical modeling to gain insight of underlying phenomena. Statistical analyses require flexible nonstationary and multivariate constructions, which have heretofore been hampered by a lack of models adequate for datasets of large magnitude. This project addresses this gap in statistical science, developing a unifying framework for nonstationary and multivariate spatial models capable of modeling complex spatial dependencies. Additionally, the justification for the use of nonstationary models is generally relegated to empirical results with data and simulation experiments; this research will develop a companion theory for exploring the relative benefit of these more complex spatial models. Using the tools introduced in this project, the final major goal is to develop a gridded data product for the historical climate of the United States based on large, irregularly spaced observational networks with transparent statistical methodology and formal quantification of the uncertainty in such an analysis. Historical data products such as this are of crucial importance in the fields of atmospheric and climate sciences.Modern spatial statistics has increased focus on developing methods for massive spatial datasets that involve multiple variables with complex dependency structures. This research aims to foster a common framework via multiresolution processes for modeling nonstationary and multivariate spatial structures that does not break down in the face of large sample sizes. Multiresolution processes lend themselves to fast estimation and computation, and also to the linked theoretical questions of asymptotic behavior of spatial estimators. For example, there is a lack of rigorous theoretical treatment of nonstationary approaches, with current understanding limited to experimental results. The companion large sample theory of this research is aimed at identifying situations in which nonstationary models provide tangible benefits over simpler stationary cousins. A linked goal is approximation theory for existing spatial constructions; special multiresolution constructions can approximate existing covariances such as the Matern, allowing for a theoretical treatment of spatial smoothing under these common classes of covariances. Additionally, the project will generalize the notion of a multiresolution process to the multivariate setting, allowing for feasible and flexible inference-based modeling of massive multivariate spatial datasets.
空间统计领域是统计科学的一个不断扩展的子集,在地球物理、环境、生态和经济科学等各种专业领域有着广泛的应用。 这些科学中的现代数据集通常涉及在数千到数百万个不规则间隔的地理位置观察到的多个变量。 相关的科学目标包括表面估计、随机模拟和统计建模,以深入了解潜在现象。 统计分析需要灵活的非平稳和多元结构,迄今为止,由于缺乏适合大规模数据集的模型而受到阻碍。 该项目解决了统计科学中的这一空白,为非平稳和多元空间模型开发了一个统一的框架,能够对复杂的空间依赖性进行建模。 此外,使用非平稳模型的理由通常归结为数据和模拟实验的经验结果;这项研究将开发一种配套理论来探索这些更复杂的空间模型的相对优势。使用该项目中引入的工具,最终的主要目标是基于大型、不规则间隔的观测网络开发美国历史气候的网格数据产品,并采用透明的统计方法和对此类分析中的不确定性进行正式量化。 诸如此类的历史数据产品在大气和气候科学领域至关重要。现代空间统计越来越注重开发涉及具有复杂依赖性结构的多个变量的大规模空间数据集的方法。 这项研究旨在通过多分辨率过程建立一个通用框架,用于对非平稳和多元空间结构进行建模,该框架在面对大样本量时不会崩溃。 多分辨率过程有助于快速估计和计算,也有助于空间估计器渐近行为的相关理论问题。 例如,对非平稳方法缺乏严格的理论处理,目前的理解仅限于实验结果。 这项研究的配套大样本理论旨在确定非平稳模型比更简单的平稳模型提供切实好处的情况。 一个相关的目标是现有空间结构的近似理论;特殊的多分辨率结构可以近似现有的协方差,例如 Matern,允许在这些常见协方差类别下对空间平滑进行理论处理。 此外,该项目将把多分辨率过程的概念推广到多元设置,从而允许对大规模多元空间数据集进行可行且灵活的基于推理的建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soutir Bandyopadhyay其他文献
Soutir Bandyopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soutir Bandyopadhyay', 18)}}的其他基金
Workshop: Collaborative Strategies for Predicting and Measuring Uncertainty in Rare Occurrences in Civil and Environmental Systems; Golden, Colorado; 6-8 November 2024
研讨会:预测和测量民用和环境系统中罕见事件的不确定性的协作策略;
- 批准号:
2400107 - 财政年份:2024
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210840 - 财政年份:2022
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Collaborative Research: Theory and Methods for Highly Multivariate Spatial Processes with Applications to Climate Data Science
合作研究:高度多元空间过程的理论和方法及其在气候数据科学中的应用
- 批准号:
1811384 - 财政年份:2018
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
- 批准号:
1854181 - 财政年份:2018
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
相似国自然基金
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
- 批准号:51907151
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
工业云环境下的制造服务协作机理与可靠性分析理论研究
- 批准号:51875030
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
面向协作式云计算的数据完整性验证理论与方法研究
- 批准号:61702379
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
导频污染下大规模分布式MIMO无线传输理论与技术研究
- 批准号:61501113
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
多点协作多用户无线通信信道互易性错误条件下的通信方法研究
- 批准号:61101092
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2419026 - 财政年份:2024
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
- 批准号:
2228681 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant