Conference on Stochastic Asymptotics and Applications, September 25-27, 2014
随机渐近学及其应用会议,2014 年 9 月 25-27 日
基本信息
- 批准号:1413574
- 负责人:
- 金额:$ 1.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
LudkovskiDNS-1413574 The investigators organize the Conference on Stochastic Asymptotics at University of California, Santa Barbara during September 25-27, 2014. The Conference focuses on new developments in stochastic asymptotics, especially motivated by applications in mathematical finance. A special emphasis of the meeting is on novel applications of probability and applied mathematics for ongoing regulatory-risk innovations, and study of systemic risk in the global financial system. To highlight these connections, the meeting is also joint with the 6th Western Conference on Mathematical Finance (WCMF). The WCMF series promotes the community of researchers from Western U.S. who work in the areas of financial mathematics, insurance, and statistics. A key mission of WCMF is to help in the training of young faculty and stimulate the careers of the next generation of scientists. The conference features 12 plenary talks by senior researchers and 10 presentations by invited junior participants, gathering a total of sixty researchers and graduate students. The meeting encourages and supports participation by students, early-career researchers, and members of under-represented groups. The objective of the Conference is to address cutting-edge topics in stochastic perturbation methods, which have emerged as a powerful tool in wide ranging areas of probability, applied mathematics, operations research, and materials science. The applications that are discussed include analysis of waves in random media, large deviations and rare event computation, systems of interacting agents, large-scale stochastic games, and multi-scale stochastic processes. A special focus is placed on novel applications of perturbation techniques within financial mathematics, such as pricing short-maturity financial derivatives (e.g. options or credit default swaps), in studying systemic risk in the inter-bank asset flows and credit relationships, and for investigating multi-scale models of asset dynamics (such as stochastic volatility or market microstructure in high-frequency trading). All of these areas have experienced very rapid developments in the past several years, opening up entire new directions of research in the field. The conference assembles an international and multi-disciplinary group of experts to encourage new interactions and draw new researchers to these topics. Conference web site: http://www.pstat.ucsb.edu/sa-wcmf6
LudkovskiDNS-1413574 研究人员于 2014 年 9 月 25 日至 27 日在加州大学圣塔芭芭拉分校组织了随机渐近学会议。会议重点关注随机渐近学的新发展,特别是受到数学金融应用的推动。 会议的特别重点是概率和应用数学在持续监管风险创新中的新颖应用,以及全球金融体系系统性风险的研究。 为了强调这些联系,本次会议还与第六届西方数学金融会议(WCMF)联合举办。 WCMF 系列促进了美国西部金融数学、保险和统计领域的研究人员社区的发展。 WCMF 的一个关键使命是帮助培训年轻教师并刺激下一代科学家的职业生涯。 会议共有 60 名研究人员和研究生参加,共有 12 场高级研究人员的大会报告和 10 场受邀的初级研究人员的报告。 该会议鼓励和支持学生、早期职业研究人员和代表性不足群体成员的参与。 会议的目标是讨论随机扰动方法的前沿主题,随机扰动方法已成为概率、应用数学、运筹学和材料科学等广泛领域的强大工具。 讨论的应用包括随机介质中的波分析、大偏差和罕见事件计算、交互代理系统、大规模随机博弈和多尺度随机过程。 特别关注金融数学中扰动技术的新颖应用,例如短期金融衍生品(例如期权或信用违约掉期)的定价,研究银行间资产流动和信用关系的系统性风险,以及调查资产动态的多尺度模型(例如高频交易中的随机波动或市场微观结构)。 所有这些领域在过去几年中都经历了非常快速的发展,开辟了该领域全新的研究方向。 该会议聚集了一个国际多学科专家组,以鼓励新的互动并吸引新的研究人员研究这些主题。 会议网站:http://www.pstat.ucsb.edu/sa-wcmf6
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ludkovski其他文献
Michael Ludkovski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ludkovski', 18)}}的其他基金
Collaborative Research: Pacific Alliance for Low-Income Inclusion in Statistics & Data Science
合作研究:太平洋低收入统计联盟
- 批准号:
2221421 - 财政年份:2022
- 资助金额:
$ 1.99万 - 项目类别:
Continuing Grant
Collaborative Research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
- 批准号:
1821240 - 财政年份:2018
- 资助金额:
$ 1.99万 - 项目类别:
Standard Grant
AMPS: Collaborative Research: Stochastic Modeling of the Power Grid
AMPS:协作研究:电网随机建模
- 批准号:
1736439 - 财政年份:2017
- 资助金额:
$ 1.99万 - 项目类别:
Standard Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
- 批准号:
1521743 - 财政年份:2015
- 资助金额:
$ 1.99万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Sequential Quickest Detection and Identification of Multiple Co-dependent Epidemic Outbreaks
合作研究:ATD:多种相互依赖的流行病爆发的顺序最快检测和识别
- 批准号:
1222262 - 财政年份:2012
- 资助金额:
$ 1.99万 - 项目类别:
Standard Grant
Workshop on Financial Engineering Methods for Insurance Mathematics
保险数学金融工程方法研讨会
- 批准号:
0649523 - 财政年份:2007
- 资助金额:
$ 1.99万 - 项目类别:
Standard Grant
相似国自然基金
时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
- 批准号:52377095
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于光子晶体光纤随机光栅阵列的动态准分布式矢量磁场传感研究
- 批准号:62375029
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
源于随机行人碰撞事故边界反求的头部损伤评价准则及风险预测
- 批准号:52372348
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
随机时变相位低相干宽带激光抑制受激拉曼散射的动理学研究
- 批准号:12305265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2022
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2021
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2021
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Stochastic population processes: metastability, asymptotics and phase transitions
随机总体过程:亚稳态、渐近和相变
- 批准号:
RGPIN-2018-04480 - 财政年份:2020
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Random Measures: Asymptotics, Bayesian Inference, and Stochastic Dynamics
随机测量:渐进、贝叶斯推理和随机动力学
- 批准号:
RGPIN-2016-05400 - 财政年份:2020
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual