CDS&E: Collaborative Research: Computational Design of Topological Superconductors and Weyl - Dirac Semimetals

CDS

基本信息

  • 批准号:
    1411336
  • 负责人:
  • 金额:
    $ 29.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Advanced Cyberinfrastructure contribute funds to this award. It supports a close interaction of theoretical and computational research to develop novel theoretical and computational methods and tools for calculating and predicting materials properties, and to use them to discover new materials with novel functionalities. The PIs will develop methods that combine a predictive computational method based on density functional theory with methods from the quantum mechanical theories of many interacting particles and methods from computer science. The PIs will focus on the discovery of new states of electrons that are predicted to exist in materials and involve new ways for electrons organize themselves. The organization obeys rules governed by topology, a mathematical theory that focuses on properties of objects that remain unchanged by deformation. While subtle, topological phases are robust being able to survive materials deformations and imperfections. These new topological states include new kinds of insulators, metals and superconductors. The new tools will enable the PIs and the community to predict specific materials with new electronic topological states that may arise in materials such as topological semimetals and superconductors. This research effort includes developing and disseminating a new software tool, TOP STUDIO, which will enhance and simplify research on material specific studies of new states of matter. Experimentalists, materials scientists and engineers in the US and in other countries will be able to use the user friendly interface of TOP STUDIO to calculate properties of compounds. The software will enable education on topological properties of electrons in solids at advanced undergraduate and graduate levels. The project will involve and train graduate students and postdocs who will receive a unique interdisciplinary training in computational and theoretical condensed matter physics and materials. Providing well-written objected oriented modern software, using a standardized interface will allow for broader participation of the community in this research area and for educating the next generation.TECHICAL SUMMARY The Division of Materials Research and the Division of Advanced Cyberinfrastructure contribute funds to this award. It supports development of new computational methods combining robust electronic structure methods with an advanced many-body theory and machine learning algorithms. The main objective of this project is to develop and implement new methods for the search and discovery of advanced quantum materials with novel magnetic, superconducting and transport characteristics that rely on topologically protected states. The search includes materials that are Weyl-Dirac semimetals and topological superconductors. The research nurtures the close interaction between theory and computation. The computational approach is based on density functional theory, which is able to predict some properties of many materials including metals and semiconductors, combined with dynamical mean field theory, which includes some effects of strong correlation. To tackle the variety of interactions needed to discover various topological phases in real materials new theoretical methods, powerful algorithms, and computer programs will be developed. Linear response theory will be utilized in order to predict full wave vector and frequency dependent interactions controlling topological superconductivity phenomena. Floquet theory will be used to study topological phases induced by time-dependent fields. The resulting software will contribute to the tools used to search, predict, and discover new materials with topologically protected states of electrons.The new TOP STUDIO software will be created with a user-friendly interface designed to allow materials exploration by non-experts, by materials scientists and engineers and by theoretical solid-state physicists. TOP STUDIO will promote teaching, training and learning with an educational mode, which can be used to teach students about topological states of quantum matter to students using visualization techniques.
非技术总结材料研究部和高级网络基础设施的部门为该奖项贡献了资金。它支持理论和计算研究的紧密相互作用,以开发新颖的理论和计算方法和工具来计算和预测材料特性,并使用它们来发现具有新功能的新材料。 PI将开发方法,将基于密度功能理论的预测计算方法与来自计算机科学的许多相互作用粒子和方法的量子机械理论的方法结合在一起。 PI将集中在发现新的电子状态上,这些电子状态预计将存在于材料中,并涉及电子组织的新方法。该组织服从受拓扑支配的规则,拓扑是一种数学理论,侧重于对物体的属性,而对象的属性保持不变。虽然微妙,但拓扑阶段能够在材料变形和瑕疵中生存。这些新的拓扑状态包括新型的绝缘体,金属和超导体。新工具将使PIS和社区能够使用新的电子拓扑状态预测特定的材料,这些状态可能会在拓扑半学和超导体等材料中产生。这项研究工作包括开发和传播一种新的软件工具Top Studio,该工具将增强和简化对新物质状态的特定于物质研究的研究。美国和其他国家 /地区的实验人员,材料科学家和工程师将能够使用Top Studio的用户友好界面来计算化合物的特性。该软件将在高级本科和研究生级别的固体中对电子的拓扑特性进行教育。 该项目将参与和培训研究生和博士后,他们将接受计算和理论凝结物理物理和材料的独特跨学科培训。使用标准化的界面提供编写良好的反对现代软件,将使社区更广泛地参与该研究领域并教育下一代。技术摘要材料研究部和高级Cyber​​infrasture的部门为该奖项贡献了资金。它支持开发新的计算方法,将强大的电子结构方法与先进的多体理论和机器学习算法相结合。该项目的主要目的是开发和实施新方法,以搜索和发现具有依赖拓扑受保护状态的新型磁性,超导和运输特征的高级量子材料。搜索包括Weyl-Dirac半法和拓扑超导体的材料。该研究培养了理论与计算之间的紧密相互作用。计算方法基于密度功能理论,该理论能够预测许多材料的某些特性,包括金属和半导体,结合动态平均场理论,其中包括强相关的某些效果。为了解决在真实材料中发现各种拓扑阶段所需的各种互动,将开发新的理论方法,强大的算法和计算机程序。将利用线性响应理论来预测控制拓扑超导现象的全波矢量和频率依赖性相互作用。 Floquet理论将用于研究由时间依赖性领域引起的拓扑阶段。最终的软件将有助于用于搜索,预测和发现具有拓扑保护的电子状态的新材料的工具。新的顶级录音室软件将使用用户友好的界面创建,旨在允许通过非专家探索的材料探索,并由材料科学家和工程师以及理论上的固态物理学家。 Top Studio将通过教育方式促进教学,培训和学习,该模式可用于使用可视化技术向学生传授量子问题的拓扑状态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Savrasov其他文献

Sergey Savrasov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Savrasov', 18)}}的其他基金

CDS&E: Computational Studies of Weyl Semimetals: Disorder, Correlations and Topological Properties
CDS
  • 批准号:
    1832728
  • 财政年份:
    2019
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Electronic Properties of Strongly Correlated Systems using Petascale Computing
合作研究:使用千万亿级计算的强相关系统的电子特性
  • 批准号:
    0941181
  • 财政年份:
    2009
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative ITR: Computational Design of Magnetic and Superconducting Transitions Based on Cluster DMFT Approach to Electronic Structure Calculation
协作 ITR:基于电子结构计算的簇 DMFT 方法的磁和超导转变的计算设计
  • 批准号:
    0606498
  • 财政年份:
    2006
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
CAREER: ELECTRONS, PHONONS AND THE PROPERTIES OF STRONGLY CORRELATED MATERIALS
职业:电子、声子和强相关材料的性质
  • 批准号:
    0608283
  • 财政年份:
    2005
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
ITR: Computational Design of Strongly Correlated Materials Based on a Combination of the Dynamical Mean Field and the GW Methods
ITR:基于动态平均场和引力场方法相结合的强相关材料的计算设计
  • 批准号:
    0604531
  • 财政年份:
    2005
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
ITR: Computational Design of Strongly Correlated Materials Based on a Combination of the Dynamical Mean Field and the GW Methods
ITR:基于动态平均场和引力场方法相结合的强相关材料的计算设计
  • 批准号:
    0342290
  • 财政年份:
    2003
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing Grant
CAREER: ELECTRONS, PHONONS AND THE PROPERTIES OF STRONGLY CORRELATED MATERIALS
职业:电子、声子和强相关材料的性质
  • 批准号:
    0238188
  • 财政年份:
    2003
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Continuing grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
  • 批准号:
    2309102
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了