Fundamental studies of liquid crystal nanodroplets

液晶纳米液滴的基础研究

基本信息

  • 批准号:
    1410674
  • 负责人:
  • 金额:
    $ 34.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYLiquid crystals consist of elongated molecules that can pack into ordered structures, reminiscent of those assumed by atoms in solid crystals, while remaining fluid. Such ordered structures can be used to manipulate light - a property that is exploited in liquid crystal displays. An interesting feature of liquid crystals is that their structure can be altered through small perturbations at an interface; the liquid crystal can therefore serve as an amplifier, capable of transmitting molecular events over relatively long distances. This property has been used to develop sensors for specific molecules, including toxins, in which adsorption at a liquid interface triggers a series of molecular transformations that result in macroscopic color changes, which can be detected reliably and inexpensively. In this project, the PI will use theory and computation to advance understanding of the series of events, from the moment a molecule or a nanoscopic particle is adsorbed at a liquid crystal-water or at a liquid crystal-vapor interface, to the ensuing structural changes that lead to measurable optical responses. The knowledge gained from this project will contribute to the development of liquid crystal sensing technologies that could augment or surpass those available today, particularly in the realm of biological toxins, thereby leading to important societal benefits.The PI aims to integrate science and computational aspects of this project in part into a summer workshop for high school students and an outreach activity aimed to introduce computation to minority students in inner city Chicago public schools.TECHNICAL SUMMARYThis award supports theoretical and computational research and education to advance the fundamental understanding of liquid crystal interfaces. The PI aims to develop predictive molecular models capable of describing atomistic, mesoscale, and macroscopic length scales. The primary physical geometry considered here will consist of liquid crystal droplets, whose interfaces will be in contact with water or air. At the atomistic level, molecular simulations will be used to predict material properties, such as molecular conformation at an interface, that are difficult to measure experimentally and are often unavailable. At slightly longer length scales, coarse-grained models of the molecules will be used to predict and examine the defects that arise in nanoparticle-laden LC systems, thereby providing a direct description of how different morphologies respond to foreign bodies and external stimuli. At even longer length scales, continuum models will be used to understand the arrangement or segregation of surface-active molecules or nanoscopic particles in distinct regions of the droplets and their interfaces, and the formation of ordered structures within such systems. Such models will rely on the material properties and insights generated on the basis of finer, atomistic and coarse-grained levels of description. The theoretical and computational formalism for study of LC systems that will emerge from this project will offer a number of attractive features, including the ability to describe large, fully three-dimensional realizations of the inhomogeneous materials of interest and their structural and thermodynamic properties. That formalism will serve to identify new physical phenomena governed by the coupling of a three-dimensional LC system to a two-dimensional, decorated interface, and will serve as a screening tool for promising materials combinations and for demonstration of the concepts put forth in this proposal.The PI aims to integrate science and computational aspects of this project in part into a summer workshop for high school students and an outreach activity aimed to introduce computation to minority students in inner city Chicago public schools.
非技术概要液晶由细长分子组成,这些分子可以堆积成有序结构,让人想起固体晶体中原子所呈现的结构,同时保持流体状态。这种有序结构可用于操纵光——液晶显示器中利用的这一特性。液晶的一个有趣的特征是,它们的结构可以通过界面上的小扰动来改变。因此,液晶可以充当放大器,能够在相对较长的距离内传输分子事件。这一特性已被用于开发特定分子(包括毒素)的传感器,其中液体界面处的吸附会触发一系列分子转变,从而导致宏观颜色变化,这种变化可以可靠且廉价地检测到。在这个项目中,PI将利用理论和计算来加深对一系列事件的理解,从分子或纳米粒子被吸附在液晶-水或液晶-蒸汽界面的那一刻,到随后的结构导致可测量的光学响应的​​变化。从该项目中获得的知识将有助于液晶传感技术的发展,这些技术可以增强或超越当今可用的技术,特别是在生物毒素领域,从而带来重要的社会效益。该项目负责人旨在将科学和计算方面整合起来该项目的一部分是为高中生举办的夏季研讨会和一项外展活动,旨在向芝加哥市中心公立学校的少数族裔学生介绍计算。技术摘要该奖项支持理论和计算研究及教育,以增进对液晶界面的基本理解。 PI 旨在开发能够描述原子、介观和宏观长度尺度的预测分子模型。这里考虑的主要物理几何形状将由液晶滴组成,其界面将与水或空气接触。 在原子水平上,分子模拟将用于预测材料特性,例如界面处的分子构象,这些特性很难通过实验测量并且通常无法获得。在稍长的长度尺度上,分子的粗粒度模型将用于预测和检查纳米粒子负载的液晶系统中出现的缺陷,从而直接描述不同形态如何响应异物和外部刺激。在更长的长度尺度上,连续介质模型将用于了解表面活性分子或纳米粒子在液滴及其界面的不同区域中的排列或分离,以及此类系统内有序结构的形成。这些模型将依赖于在更精细、原子和粗粒度描述水平的基础上生成的材料属性和见解。该项目将出现的用于研究液晶系统的理论和计算形式将提供许多有吸引力的特征,包括描述感兴趣的非均质材料的大型、全三维实现及其结构和热力学性质的能力。这种形式主义将有助于识别由三维液晶系统与二维装饰界面耦合所控制的新物理现象,并将作为有前途的材料组合的筛选工具和演示本文中提出的概念的工具。 PI 旨在将该项目的科学和计算方面部分整合到高中生夏季研讨会和旨在向芝加哥市中心公立学校的少数族裔学生介绍计算的外展活动中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan De Pablo其他文献

Juan De Pablo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan De Pablo', 18)}}的其他基金

Collaborative Research: DMREF: Accelerated Design of Redox-Active Polymers for Metal-Free Batteries
合作研究:DMREF:无金属电池氧化还原活性聚合物的加速设计
  • 批准号:
    2119673
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Sustainable Materials and Manufacturing Virtual Square Table
可持续材料和制造虚拟方桌
  • 批准号:
    2127823
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
NRT-HDR: AI-enabled Molecular Engineering of Materials and Systems (AIMEMS) for Sustainability
NRT-HDR:支持人工智能的材料和系统分子工程 (AIMEMS) 实现可持续发展
  • 批准号:
    2022023
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Microscale Autonomous Device Engineering (MADE)
规划资助:微型自主设备工程工程研究中心(MADE)
  • 批准号:
    1840557
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
EFRI CEE: Epigenomic Regulation Over Multiple Length Scales: Understanding Chromatin Modifications Through Label Free Imaging and Multi-Scale Modeling
EFRI CEE:多个长度尺度的表观基因组调控:通过无标签成像和多尺度建模了解染色质修饰
  • 批准号:
    1830969
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a high-performance GPU-based computer for advanced multiscale materials modeling
MRI:购买基于 GPU 的高性能计算机,用于高级多尺度材料建模
  • 批准号:
    1828629
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Chromatin Structure and Dynamics from Nanometer to Micrometer Length Scales
从纳米到微米长度尺度的染色质结构和动力学
  • 批准号:
    1818328
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Frontiers of Molecular Design and Engineering - Junior Researcher Travel Scholarships
分子设计与工程前沿 - 初级研究员旅行奖学金
  • 批准号:
    1840839
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
A Unified Framework for Description of Lyotropic and Active Liquid Crystals Far from Equilibrium
描述远离平衡态的溶致液晶和活性液晶的统一框架
  • 批准号:
    1710318
  • 财政年份:
    2017
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Workshop on Molecular Interfaces in Fluids and Materials Warsaw, Poland on June 18-21, 2014, at Warsaw University
流体和材料分子界面研讨会,波兰华沙,2014 年 6 月 18-21 日,华沙大学
  • 批准号:
    1303454
  • 财政年份:
    2013
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant

相似国自然基金

磁感应-乳化多功能离子液体基微乳液体系的构建及其强化木质素解聚研究
  • 批准号:
    22308107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
交联羧酸功能化离子液体复合膜的设计及H2S/CO2分离性能研究
  • 批准号:
    22308145
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双溶剂型RILMs的构筑及其对有序多孔聚离子液体吸附薄膜的调控合成研究
  • 批准号:
    22308141
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
离子液体促进硝解合成HMX反应机理的理论研究
  • 批准号:
    22305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高性能多孔液体吸附剂的创制及其强化天然气脱碳机理研究
  • 批准号:
    22308276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fundamental Studies in Solid-Liquid Separation in Oil Sands
油砂固液分离基础研究
  • 批准号:
    RGPIN-2018-03948
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental Studies in Solid-Liquid Separation in Oil Sands
油砂固液分离基础研究
  • 批准号:
    RGPIN-2018-03948
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental studies on the practical use of liquid helium-free, medium-temperature superconducting wires
无液氦中温超导线材实用化基础研究
  • 批准号:
    20H02681
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Studies in Solid-Liquid Separation in Oil Sands
油砂固液分离基础研究
  • 批准号:
    RGPIN-2018-03948
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental Studies in Solid-Liquid Separation in Oil Sands
油砂固液分离基础研究
  • 批准号:
    RGPIN-2018-03948
  • 财政年份:
    2019
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了