Dynamic Control of Glycan Biosynthesis with Synthetic RNA Circuitry
利用合成 RNA 电路动态控制聚糖生物合成
基本信息
- 批准号:1402843
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: CBET - 1402843 Principal Investigator: Julius Lucks Institution: Cornell University Title: Dynamic Control of Glycan Biosynthesis with Synthetic RNA Circuitry Of the many proteins that exist inside our bodies, most are decorated with complex sugars called glycans through a process called glycosylation. Glycosylation is often necessary for these proteins to function correctly. For therapeutic use in humans, glycoproteins must have human-like glycans. Thus production is often limited to mammalian cell culture, which is time-consuming, expensive, and susceptible to viral contamination. A strain of Escherichia coli capable of producing human-like glycoproteins could overcome some of these hurdles. This project seeks to take bacterial production of glycosylated proteins to the next level by using state-of-the art techniques in RNA engineering to dynamically optimize the output of the glycosylation pathway. In this project, the investigators will use the principles of RNA engineering to create genetic networks that dynamically tune the expression of glycosylation enzymes as they are needed in order to increase product output and purity. The proposed studies and research training activities are expected to have a broad impact on society, ranging from the science of glycobiology and the engineering science of RNA gene regulation, to the development of human glycotherapeutics. This project will also cultivate the next generation of highly trained graduate students who will be introduced to the broad, interdisciplinary nature of biotechnology research. Moreover, this program will actively and aggressively broaden participation in science and engineering. This will be accomplished by providing interdisciplinary research opportunities for undergraduate students, developing experiential glycoscience learning modules for undergraduate and high school students, and creating a quantitative graduate-level course for biomolecular engineering and synthetic biology. Finally, the development of bacterial glycosylation and RNA engineering for biotechnological applications will be brought to a larger research community through partnership with local biotechnology companies. The long-term goal of this research project is to genetically engineer and optimize bacterial cells for the routine production of authentic human N-linked glycoproteins. To date, the investigators have recreated the earliest steps of this complicated process in Escherichia coli. The objective of this particular application is to maximize the productivity of this pathway by engineering synthetic RNA-based genetic circuitry that will dynamically control the expression of glycosylation enzymes using two distinct strategies. The first will eliminate competitive side reactions by creating distinct stages of glycan construction followed by glycan targeting, which we anticipate will dramatically increase the purity of the glycoproteins produced. In parallel, pathway productivity will be optimized by expressing pathway enzymes 'just-in-time' in the order they are needed as is done in several essential metabolic pathways used by cells. Since glycosylation consists of sequential enzyme steps that take place in different parts of the cell, controlling the dynamics of enzyme expression so that they are most active when needed is expected to significantly boost pathway production. Successful completion of these studies will lead to the development of a novel bacterial glycoprotein expression platform with the potential to overcome many of the limitations of existing eukaryotic platforms. Moreover, the proposed studies and research training activities will impact: (i) biotechnological synthesis of novel glycoconjugates and potential immunostimulating agents for research, industrial and therapeutic applications; (ii) the development of new, broadly applicable strategies that can be used to optimize a wide array of metabolic processes; and (iii) the development of new tools and design principles for engineering genetic circuitry to control cellular behavior with far-reaching potential. Due to the interdisciplinary nature of the project, this award by the Biotechnology, Biochemical, and Biomass Engineering Program of the CBET Division is co-funded by the Systems and Synthetic Biology Program of the Division of Molecular and Cellular Biology.
提案编号:CBET - 1402843 首席研究员:Julius Lucks 机构:康奈尔大学 标题:利用合成 RNA 电路动态控制聚糖生物合成 在我们体内存在的许多蛋白质中,大多数通过称为糖基化的过程用称为聚糖的复杂糖进行修饰。糖基化通常是这些蛋白质正常发挥作用所必需的。对于人类的治疗用途,糖蛋白必须具有类似人类的聚糖。因此,生产通常仅限于哺乳动物细胞培养,这既耗时又昂贵,并且容易受到病毒污染。能够产生类人糖蛋白的大肠杆菌菌株可以克服其中一些障碍。 该项目旨在通过使用 RNA 工程中最先进的技术来动态优化糖基化途径的输出,将糖基化蛋白质的细菌生产提升到一个新的水平。在该项目中,研究人员将利用 RNA 工程原理创建遗传网络,根据需要动态调整糖基化酶的表达,以提高产品产量和纯度。拟议的研究和研究培训活动预计将对社会产生广泛的影响,从糖生物学科学和RNA基因调控工程科学到人类糖疗法的开发。该项目还将培养下一代训练有素的研究生,让他们了解生物技术研究的广泛、跨学科性质。此外,该计划将积极主动地扩大对科学和工程的参与。这将通过为本科生提供跨学科研究机会、为本科生和高中生开发体验式糖科学学习模块以及创建生物分子工程和合成生物学的定量研究生水平课程来实现。最后,通过与当地生物技术公司的合作,用于生物技术应用的细菌糖基化和RNA工程的发展将被带到更大的研究界。该研究项目的长期目标是对细菌细胞进行基因工程和优化,以常规生产真正的人类 N 连接糖蛋白。迄今为止,研究人员已经在大肠杆菌中重现了这一复杂过程的最早步骤。这一特定应用的目标是通过设计基于合成 RNA 的遗传电路来最大限度地提高该途径的生产力,该电路将使用两种不同的策略动态控制糖基化酶的表达。第一个将通过创建不同的聚糖构建阶段,然后进行聚糖靶向来消除竞争性副反应,我们预计这将显着提高所产生的糖蛋白的纯度。与此同时,通过按照需要的顺序“及时”表达途径酶,可以优化途径生产力,就像细胞使用的几种基本代谢途径中所做的那样。由于糖基化由发生在细胞不同部分的连续酶步骤组成,控制酶表达的动态,使它们在需要时最活跃,预计将显着促进途径产生。这些研究的成功完成将导致新型细菌糖蛋白表达平台的开发,该平台有可能克服现有真核平台的许多局限性。此外,拟议的研究和研究培训活动将影响:(i)用于研究、工业和治疗应用的新型糖复合物和潜在免疫刺激剂的生物技术合成; (ii) 开发新的、广泛适用的策略,可用于优化各种代谢过程; (iii) 开发新工具和设计原理,用于工程遗传电路以控制具有深远潜力的细胞行为。由于该项目的跨学科性质,该奖项由 CBET 部门的生物技术、生物化学和生物质工程项目获得,并由分子和细胞生物学部门的系统和合成生物学项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julius Lucks其他文献
Julius Lucks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julius Lucks', 18)}}的其他基金
URoL:ASC: The design, development, and societal impact of rapid, in-home, water quality biosensors
URoL:ASC:快速家用水质生物传感器的设计、开发和社会影响
- 批准号:
2319427 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Transitions: Evolving our Understanding of Dynamic RNA Folding and Function
转变:加深我们对动态 RNA 折叠和功能的理解
- 批准号:
2310382 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NRT-URoL: Synthesizing Biology Across Scales – A Convergent Synthetic Biology Training Program
NRT-URoL:跨尺度合成生物学 — 融合合成生物学培训计划
- 批准号:
2021900 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RAPID: Point-of-Need Detection of COVID-19 using CRISPR-Enabled Cell-Free Synthetic Biology
RAPID:使用支持 CRISPR 的无细胞合成生物学对 COVID-19 进行定点检测
- 批准号:
2028651 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering How Riboswitches Exploit Out-of-Equilibrium RNA Folding Pathways to Make Genetic Decisions
合作研究:揭示核糖开关如何利用非平衡 RNA 折叠途径做出遗传决策
- 批准号:
1914567 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RAPID: Collaborative Research: A cell-free synthetic biology platform for water quality monitoring - field testing and validation at the Camp Fire site in Paradise, California
RAPID:协作研究:用于水质监测的无细胞合成生物学平台 - 在加利福尼亚州天堂市 Camp Fire 现场进行现场测试和验证
- 批准号:
1929912 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Advanced biomanufacturing with inducible feedback promoters
目标:具有诱导反馈启动子的先进生物制造
- 批准号:
1803747 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Uncovering Quantitative Design Principles of RNA Regulators For Synthetic Biology
职业:揭示合成生物学 RNA 调节剂的定量设计原理
- 批准号:
1650040 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Uncovering Quantitative Design Principles of RNA Regulators For Synthetic Biology
职业:揭示合成生物学 RNA 调节剂的定量设计原理
- 批准号:
1452441 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
The Nuts and Bolts of Bioengineered Systems: A Workshop on Standards in Synthetic Biology; Valencia, Spain- March 8-10, 2015
生物工程系统的具体细节:合成生物学标准研讨会;
- 批准号:
1523345 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于多糖电荷密度控制的硫酸葡聚糖辅助卵转铁蛋白增稳机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
解淀粉芽孢杆菌来源酸性木聚糖酶Bxyn酸稳定性和催化效率联结变化的分子控制机制
- 批准号:31901634
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
壳聚糖水凝胶双网络结构的构建及其药物控释机理的研究
- 批准号:21776100
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
基于原位还原纳米银的壳聚糖/明胶止血材料可控制备及其止血机理
- 批准号:51703185
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
细菌纤维素基多层复合功能敷料的设计、可控制备及性能研究
- 批准号:31760265
- 批准年份:2017
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
相似海外基金
New Glycosylation Methods for Microbial Glycan Synthesis
微生物聚糖合成的新糖基化方法
- 批准号:
10515058 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Role of HIV glycan shield in mucus penetration
HIV 聚糖盾在粘液渗透中的作用
- 批准号:
10516749 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Role of HIV glycan shield in mucus penetration
HIV 聚糖盾在粘液渗透中的作用
- 批准号:
10403303 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Next Generation Glycan Microarray using DNA-coded glycans and Next Generation Sequencing (NGS)
使用 DNA 编码聚糖和下一代测序 (NGS) 的下一代聚糖微阵列
- 批准号:
10671639 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Next Generation Glycan Microarray using DNA-coded glycans and Next Generation Sequencing (NGS)
使用 DNA 编码聚糖和下一代测序 (NGS) 的下一代聚糖微阵列
- 批准号:
10455643 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别: