Collaborative Research: Better efficiency, better forecasting, better accuracy: A new light on the dependence structure in high frequency data

协作研究:更高的效率、更好的预测、更高的准确性:高频数据中依赖结构的新视角

基本信息

  • 批准号:
    1407820
  • 负责人:
  • 金额:
    $ 12.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Recent years have seen an explosion in the availability and size of data in many areas of endeavor; the phenomenon is often referred to as big data. This project is concerned with a particular form of such data, namely high frequency data (HFD), where series of observations can see new data to arrive in fractions of milliseconds. HFD occurs in medicine, in finance and economics, in certain recordings relating to the environment, and perhaps in other areas. Research is often concerned with how to turn this data into knowledge, and this is where the current project will help. Specifically, the project has discovered a new way to look at the dependence relationships between the parameters governing the state of the HFD system. The new dependence structure permits the borrowing of information from adjacent time periods, and also from other series if one has a panel of data. The consequences of this new approach are being explored by the project. The research produces transformational improvements in the statistical handling of high frequency data. The new way to look at dependence involves the representation of series of ordinary integrals with the help of stochastic integrals. This permits the use of high frequency regression techniques to connect the information in adjacent time intervals. It is achieved without altering current models. This has far-reaching consequences, leading to more efficient estimators, better prediction, and, in terms of accuracy, a more systematic treatment of the estimation of standard errors. Model selection will also be greatly facilitated. The methodology does not depend on either time or panel size being large; neither does it depend on assumptions such as stationarity of the data series. All the new dependence relationships can be consistently estimated from high frequency data inside the relevant time periods. Efficiency gains are at the very least close to 50%, and thus existing efficiency bounds will become irrelevant. It is expected that this approach will form a new paradigm for high frequency data. In addition to developing a general theory, the project is concerned with applications to financial data. Applied quantities of interest include realized daily volatility, correlations, leverage effect, volatility risk, fraction of jumps, and so on. We also work on applications to risk management, forecasting, and portfolio management. More precise estimators, with improved standard errors, will be useful in all these areas of finance. The results are of interest to main-street investors, regulators and policymakers, and the results are entirely in the public domain. The dependence structure also has application in other areas of research that have high frequency data, including medicine, neural science, and turbulence.
近年来,许多领域的数据可用性和规模呈爆炸式增长。这种现象通常被称为大数据。该项目涉及此类数据的一种特殊形式,即高频数据 (HFD),其中一系列观测可以看到新数据在几分之一毫秒内到达。 HFD 出现在医学、金融和经济、某些与环境有关的记录中,也许还出现在其他领域。研究通常关注如何将这些数据转化为知识,而这正是当前项目将提供帮助的地方。具体来说,该项目发现了一种新方法来查看控制 HFD 系统状态的参数之间的依赖关系。新的依赖结构允许借用相邻时间段的信息,如果有一组数据,也可以借用其他系列的信息。该项目正在探索这种新方法的后果。该研究对高频数据的统计处理产生了革命性的改进。看待相关性的新方法涉及借助随机积分来表示普通积分系列。这允许使用高频回归技术来连接相邻时间间隔中的信息。它是在不改变当前模型的情况下实现的。这具有深远的影响,导致更有效的估计、更好的预测,以及在准确性方面对标准误差估计的更系统的处理。选型也将大大方便。该方法不依赖于时间或面板大小;它也不依赖于数据序列的平稳性等假设。所有新的依赖关系都可以根据相关时间段内的高频数据一致地估计。效率增益至少接近 50%,因此现有的效率界限将变得无关紧要。预计这种方法将形成高频数据的新范例。除了发展一般理论之外,该项目还涉及金融数据的应用。利息的应用量包括已实现的每日波动率、相关性、杠杆效应、波动风险、跳跃分数等。我们还致力于风险管理、预测和投资组合管理的应用程序。更精确的估算器以及改进的标准误差将在所有这些金融领域发挥作用。结果引起了主流投资者、监管机构和政策制定者的兴趣,并且结果完全属于公共领域。依赖结构还适用于具有高频数据的其他研究领域,包括医学、神经科学和湍流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan Zhang其他文献

A novel insulin-sodium oleate complex for oral administration: preparation, characterization and in vivo evaluation
一种新型口服胰岛素-油酸钠复合物:制备、表征和体内评价
Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study
凹面Cu-Pd双金属纳米晶:基于配体的共还原和机理研究
  • DOI:
    10.1007/s12274-015-0752-8
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan Zhang;Hongyang Su;Mei Sun;Youcheng Wang;Wenlong Wu;Taekyung Yu;Jie Zeng
  • 通讯作者:
    Jie Zeng
Copper–Palladium Tetrapods with Sharp Tips as a Superior Catalyst for the Oxygen Reduction Reaction
具有锋利尖端的铜-钯四足体作为氧还原反应的优质催化剂
  • DOI:
    10.1002/cctc.201701578
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Lan Zhang;Sheng Chen;Yanmeng Dai;Zeqi Shen;Miaojin Wei;Ruijie Huang;Hongliang Li;Tingting Zheng;Yunjiao Zhang;Shiming Zhou;Jie Zeng
  • 通讯作者:
    Jie Zeng
Comparison of GRACE and GNSS seasonal load displacements considering regional averages and discrete points.
考虑区域平均值和离散点的 GRACE 和 GNSS 季节性荷载位移比较。
pH-Responsive ECM Coating on Ti Implants for Antibiosis in Reinfected Models
钛植入物上的 pH 响应 ECM 涂层用于再感染模型中的抗菌作用
  • DOI:
    10.1021/acsabm.1c01143
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kai Li;Lan Zhang;Jianhua Li;Yang Xue;Jianhong Zhou;Yong Han
  • 通讯作者:
    Yong Han

Lan Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan Zhang', 18)}}的其他基金

CRII: CNS: IoT-aware Federated On-Device Intelligence
CRII:CNS:物联网感知的联合设备上智能
  • 批准号:
    2418308
  • 财政年份:
    2024
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
CRII: CNS: IoT-aware Federated On-Device Intelligence
CRII:CNS:物联网感知联合设备智能
  • 批准号:
    2153381
  • 财政年份:
    2022
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High Dimensional and High Frequency Data
合作研究:高维高频数据的统计推断
  • 批准号:
    2015530
  • 财政年份:
    2020
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High-Frequency Data
合作研究:高频数据的统计推断
  • 批准号:
    1713118
  • 财政年份:
    2017
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
  • 批准号:
    2244805
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
  • 批准号:
    2244804
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310114
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Better Together: Integrating MOUD in African American Community Settings
更好地在一起:将 MOUD 融入非裔美国人社区环境
  • 批准号:
    10791356
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了