Collaborative Research: Surface Engineering and Atomic Layer Deposition of Dielectrics on Two-Dimensional Atomic Crystals for Device Application
合作研究:用于器件应用的二维原子晶体上电介质的表面工程和原子层沉积
基本信息
- 批准号:1407677
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant is funded jointly by the Electronics, Photonics, and Magnetic Devices (EPMD) Program in the Division of Electrical, Communications and Cyber Systems (ECCS) and by the Electronic and Photonic Materials (EPM) Program in the Division of Materials Research (DMR).Miniaturization lies in the heart of technological advancement in the semiconductor industry. However, a substantial change in the design of the basic building block which is the metal oxide semiconductor field effect transistor (MOSFET) is required as the current architecture and materials are reaching limits imposed by the laws of physics. A solution to this conundrum is the use of new materials such as two dimensional (2D) atomic crystals that we have only recently begun to investigate in detail. Such materials are the ultimate small medium allowing the fabrication of high quality devices. The goal of this work is to exploit and further our understanding of the properties of these nanostructured materials and to introduce device structures with operational principles different than the conventional technology, while at the same time continuing to benefit from the already existing vast experience with silicon technology. This work responds to the widely recognized need for progress in nanoelectronics and technology as the current paradigm is reaching the fundamental physical and economic limit. The outcomes of this work also include new nano-fabrication technology and nanoelectronic metrology which will add to the national nanotechnology portfolio, a vital component for the future technological dominance of the USA. Technologies cannot be advanced or applied in the absence of highly qualified scientists and engineers. Two graduate students, one from UMBC and one George Mason University will gain their Ph.D. while interacting very closely with each other and our collaborators at NIST, preparing them for careers in industry, academia and government. Many undergraduate students will also be benefit, for example by doing their senior design projects. Parts of the research will be integrated into graduate level courses currently taught by both PIs and results will be presented in seminars, conferences and peer reviewed publications. The goal of this proposal is to produce new knowledge in the area of surface preparation methods so as to enable atomic layer deposition of high-quality dielectrics on two-dimensional (2D) atomic crystals MOSFET applications. The 2D materials, such as the isolated monolayer and few-layers of MoS2 and WSe2 will be grown at wafer scale for both in-situ characterization and circuit integration. Their surface will be carefully engineered with self-assembled monolayers of molecules to enable the formation of high-quality interface during the atomic layer deposition of dielectrics. The surface preparation results will be analyzed in-situ during the deposition of dielectrics, and compared with physisorbed dielectrics. This surface modification will enable high-performance 2D atomic crystal MOSFETs and circuits which will nevertheless remain compatible with silicon technology. These new devices will be characterized by better gate control, faster operation and lower leakage power dissipation at reduced area and cost. The acquired surface preparation technology will enable integration of 2D MOSFETs and electronic circuits, and act as platforms to demonstrate the properties of materials and interfaces. This work will exploit the inherent advantages of the 2D nanomaterials and devices, with the potential to have transformational impact on the next generation of devices and electronic circuits.
该赠款由电气、通信和网络系统(ECCS)部门的电子、光子和磁性器件(EPMD)项目以及材料研究部门(DMR)的电子和光子材料(EPM)项目共同资助).小型化是半导体行业技术进步的核心。然而,由于当前的架构和材料已达到物理定律所施加的限制,因此需要对基本构件(金属氧化物半导体场效应晶体管(MOSFET))的设计进行重大改变。解决这一难题的方法是使用新材料,例如我们最近才开始详细研究的二维 (2D) 原子晶体。这种材料是最终的小型介质,可以制造高质量的设备。 这项工作的目标是利用和进一步了解这些纳米结构材料的特性,并引入具有不同于传统技术的操作原理的器件结构,同时继续受益于现有的丰富的硅技术经验。这项工作响应了人们广泛认可的纳米电子学和技术进步的需求,因为当前的范式正在达到基本的物理和经济极限。 这项工作的成果还包括新的纳米制造技术和纳米电子计量学,这将增加国家纳米技术组合,这是美国未来技术主导地位的重要组成部分。如果没有高素质的科学家和工程师,技术就无法先进或应用。两名研究生,一名来自 UMBC 和一名乔治梅森大学,将获得博士学位。同时与彼此以及我们在 NIST 的合作者进行密切互动,为他们在工业界、学术界和政府的职业生涯做好准备。许多本科生也将从中受益,例如通过完成他们的高级设计项目。该研究的部分内容将被纳入目前由两位 PI 教授的研究生课程中,研究结果将在研讨会、会议和同行评审出版物中公布。 该提案的目标是产生表面处理方法领域的新知识,以便能够在二维 (2D) 原子晶体 MOSFET 应用上实现高质量电介质的原子层沉积。二维材料,例如孤立的单层和几层 MoS2 和 WSe2,将以晶圆级生长,用于原位表征和电路集成。它们的表面将用自组装分子单层精心设计,以便在电介质的原子层沉积过程中形成高质量的界面。表面处理结果将在电介质沉积过程中进行原位分析,并与物理吸附电介质进行比较。这种表面改性将实现高性能 2D 原子晶体 MOSFET 和电路,但仍与硅技术兼容。这些新器件的特点是更好的栅极控制、更快的操作和更低的漏电功耗,并且面积和成本更小。 所获得的表面处理技术将实现2D MOSFET和电子电路的集成,并作为展示材料和界面特性的平台。这项工作将利用二维纳米材料和器件的固有优势,有可能对下一代器件和电子电路产生变革性影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodosia Gougousi其他文献
Theodosia Gougousi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodosia Gougousi', 18)}}的其他基金
Deposition and nonlinear optical properties of transition metal nitride/oxide thin films
过渡金属氮化物/氧化物薄膜的沉积和非线性光学性质
- 批准号:
1905305 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Deposition and Interface Properties of Metal Oxide Films on GaAs
职业:GaAs 上金属氧化物薄膜的沉积和界面特性
- 批准号:
0846445 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
NER: Supercritical Carbon Dioxide Assisted Deposition and Interfacial Properties of Metal Oxide Thin Films
NER:超临界二氧化碳辅助金属氧化物薄膜的沉积和界面性能
- 批准号:
0506690 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
- 批准号:62305229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
弓形虫感染对蜕膜NK细胞表面Lag-3的影响及进而导致其母胎耐受功能紊乱的分子机制研究
- 批准号:32302903
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
表面接枝改性制备CaO-B2O3-C前驱体及感应加热合成CaB6的机理研究
- 批准号:52362008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
E3泛素连接酶MDM2对乙肝表面抗原组装和分泌的影响及机制研究
- 批准号:82300690
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313121 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349884 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant