Regularized Learning Enabled Monitoring and Control for Wind Power Systems

风电系统的常规学习监控和控制

基本信息

项目摘要

The objective of this project is to develop new monitoring and control strategies for enhancing wind turbine reliability so that operations and maintenance costs of wind energy can be reduced. In wind power systems, the "wind input"-to-"turbine response" relationship is nonstationary, due to both internal (e.g., system's degradation) and external (e.g., surface contamination on blades) changes. This nonstationary dependency causes significant technological challenges in managing the health and performance of wind turbines. This project will develop a new regularized learning method to characterize the time-varying dependency among system variables so that changes in a turbine system can be tracked and predicted. Subsequently, a statistical monitoring method with adaptive control limits will be devised to signal the occurrence of anomalies. Based on the results from the regularized learning process, an adaptive control strategy will be developed to mitigate excessive and undesired mechanical stresses on turbine subsystems in an effort to prevent or slow the deterioration process. A new wireless structural health monitoring (SHM) system supporting real-time, embedded data processing will be advanced to track the behavior, performance and health of operational turbines. The outcomes of this research will facilitate the wind industry's smooth transition from using rudimentary diagnosis and control techniques to the use of sophisticated and integrative monitoring and control technologies. The new monitoring method will enable timely detection of anomalies while reducing the false alarms. Optimally determined control parameters will balance between power production and stress levels in an effort to extend a turbine?s service life. While using wind turbines as the primary application target, the methodology is applicable to other engineering systems subject to dynamic operating conditions including civil infrastructure systems. This project will contribute toward the preparation of a future workforce in the field of renewable energy and sustainability through an array of mechanisms including the integration of under-represented students in the STEM field into renewable energy research, opportunities for students to interact with national laboratories, and to be engaged with other domestic and international research groups.
该项目的目标是开发新的监测和控制策略,以提高风力涡轮机的可靠性,从而降低风能的运营和维护成本。在风力发电系统中,由于内部(例如系统退化)和外部(例如叶片表面污染)的变化,“风输入”与“涡轮机响应”关系是不稳定的。这种非平稳依赖性给管理风力涡轮机的健康和性能带来了重大的技术挑战。 该项目将开发一种新的正则化学习方法来表征系统变量之间的时变依赖性,以便跟踪和预测涡轮机系统的变化。 随后,将设计具有自适应控制极限的统计监测方法来发出异常发生的信号。根据规则化学习过程的结果,将开发自适应控制策略,以减轻涡轮机子系统上过度和不期望的机械应力,以防止或减缓恶化过程。 一种支持实时嵌入式数据处理的新型无线结构健康监测(SHM)系统将得到改进,以跟踪运行涡轮机的行为、性能和健康状况。 这项研究的成果将促进风电行业从使用基本的诊断和控制技术到使用复杂的综合监测和控制技术的平稳过渡。新的监控方法将能够及时发现异常情况,同时减少误报。 最佳确定的控制参数将在发电量和应力水平之间取得平衡,以延长涡轮机的使用寿命。 虽然以风力涡轮机作为主要应用目标,但该方法也适用于受动态运行条件影响的其他工程系统,包括民用基础设施系统。 该项目将通过一系列机制,为可再生能源和可持续发展领域的未来劳动力做好准备,包括将 STEM 领域代表性不足的学生纳入可再生能源研究、为学生提供与国家实验室互动的机会、并与其他国内外研究小组合作。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments
黑盒计算机实验随机模拟的不确定性量化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eunshin Byon其他文献

Eunshin Byon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eunshin Byon', 18)}}的其他基金

Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Framework for Assessing the Impact of Extreme Heat and Drought on Urban Energy Production and Consumption
合作研究:评估极端高温和干旱对城市能源生产和消费影响的框架
  • 批准号:
    1662553
  • 财政年份:
    2017
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: From Bytes to Watts - A Data Science Solution to Improve Wind Energy Reliability and Operation
BIGDATA:IA:协作研究:从字节到瓦特 - 提高风能可靠性和运行的数据科学解决方案
  • 批准号:
    1741166
  • 财政年份:
    2017
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Collaborative Degradation Analysis for Enterprise-Level Maintenance Management via Dynamic Segmentation
协作研究:通过动态细分进行企业级维护管理的协作退化分析
  • 批准号:
    1536924
  • 财政年份:
    2015
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可变Petri网的RPA流程学习和优化方法研究
  • 批准号:
    62302306
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向层次化视觉数据的双曲学习方法研究
  • 批准号:
    62306070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会学习视角下旅游社区灾害韧性的特征、建设机制与实践路径研究
  • 批准号:
    42301271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于标记分布学习的无锚框三维目标检测技术
  • 批准号:
    62306072
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    EU-Funded
EAGER: Private Blockchain-Enabled Federated Learning Framework for Distributed Manufacturing Networks
EAGER:支持私有区块链的分布式制造网络联合学习框架
  • 批准号:
    2420964
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了