Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
基本信息
- 批准号:1406016
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High dimensional statistical problems are prevalent in the environmental sciences, particularly in soil, atmospheric, and oceanic data applications. In these cases the processes of interest are inherently nonlinear and dynamic. Different sources of information for these systems include spatial observational data as well as physics and chemistry based numerical models. Over the past decade there has been an increase in the amount of available real-time geographic information as well as advances in the sophistication and resolution of deterministic atmospheric and oceanic models. A broad class of spatial-temporal models is developed for multivariate processes on Euclidean spaces and the sphere to explain the variability and the cross-dependency between different variables. This general class of models goes beyond standard assumptions, in particular of stationarity. The properties of the proposed methods, as well as the asymptotic properties of the estimates are studied. Likelihood approximation methods for massive spatial data are presented to efficiently implement the proposed statistical models. The proposed framework and models are used to better model soil pollution, air pollution, and wind fields. These high spatial resolution wind fields are used to predict energy production from windmills, they are also the primary forcing for numerical forecasts of the coastal ocean response to force winds such as the height of the storm surge and the degree of coastal flooding. The goal is to obtain more accurate estimation of wind fields over land and water to improve the quality of storm surge forecasts, and wind energy.The most important scientific contributions of this research project are: the introduction of flexible spatial models on the sphere for prediction and estimation of environmental spatial processes observed over larger regions on the Earth's surface; methods for likelihood approximation of big spatial temporal lattice data in general situations; general and flexible models for spatial prediction of multivariate environmental processes on spatial lattices, introducing the concept of conditional correlation in spatial lattice models; and advanced methods for spatial prediction and estimation in the presence of massive data from observations and physical and chemistry models. In these cases the processes of interest are inherently nonlinear and dynamic. Different sources of information for these systems include observational data as well as physics-based numerical models. Over the past decade there has been an increase in the amount of available real-time observations as well as advances in the sophistication and resolution of deterministic chemistry, atmospheric and oceanic models. Our methodology will provide more accurate representation and prediction of the underlying space-time process of interest. Through our collaborative work, we will help the enhancement of science by implementing these methods to hurricane wind fields and to weather and air and soil pollution to improve weather and air/soil quality mapping. The investigators will disseminate broadly the methods proposed here to enhance mathematical and scientific understanding. The PI will offer short courses in Spanish in Hispanic countries to broaden the participation of underrepresented geographic and ethnic groups. A course in advanced spatial statistics methods will be taught by the PI, and the new statistical methods proposed here will be introduced to the students. The investigators will continue their efforts to broaden the participation of minorities and women in Sciences and the PI through this project will continue her involvement on K-12 educational efforts, through the Kenan Fellows for Curriculum and Leadership Development Program and the Science House at NCSU.
高维统计问题在环境科学中普遍存在,特别是在土壤、大气和海洋数据应用中。在这些情况下,感兴趣的过程本质上是非线性和动态的。这些系统的不同信息源包括空间观测数据以及基于物理和化学的数值模型。在过去的十年中,可用的实时地理信息的数量不断增加,确定性大气和海洋模型的复杂性和分辨率也不断提高。为欧几里德空间和球体上的多元过程开发了一类广泛的时空模型,以解释不同变量之间的变异性和交叉依赖性。这类一般模型超出了标准假设,特别是平稳性假设。研究了所提出方法的特性以及估计的渐近特性。提出了海量空间数据的似然近似方法,以有效地实现所提出的统计模型。所提出的框架和模型用于更好地模拟土壤污染、空气污染和风场。这些高空间分辨率风场用于预测风车的发电量,也是对沿海海洋对强风的响应进行数值预测的主要强迫,例如风暴潮的高度和沿海洪水的程度。目标是获得更准确的陆地和水上风场估计,以提高风暴潮预报和风能的质量。该研究项目最重要的科学贡献是:在球体上引入灵活的空间模型进行预测以及对地球表面较大区域观测到的环境空间过程的估计;一般情况下大时空格数据的似然逼近方法;空间格子上多元环境过程空间预测的通用且灵活的模型,引入空间格子模型中条件相关的概念;以及在存在来自观测和物理和化学模型的大量数据的情况下进行空间预测和估计的先进方法。在这些情况下,感兴趣的过程本质上是非线性和动态的。这些系统的不同信息源包括观测数据以及基于物理的数值模型。在过去的十年中,可用的实时观测数量不断增加,确定性化学、大气和海洋模型的复杂性和分辨率也不断提高。我们的方法将为感兴趣的潜在时空过程提供更准确的表示和预测。通过我们的协作工作,我们将通过对飓风风场以及天气、空气和土壤污染实施这些方法来帮助加强科学,以改善天气和空气/土壤质量测绘。研究人员将广泛传播此处提出的方法,以增强数学和科学理解。 PI 将在西班牙裔国家提供西班牙语短期课程,以扩大代表性不足的地理和种族群体的参与。 PI将教授高级空间统计方法课程,并向学生介绍这里提出的新统计方法。 调查人员将继续努力扩大少数族裔和女性对科学的参与,通过该项目,PI 将通过凯南课程和领导力发展计划研究员以及北卡罗来纳州立大学科学之家继续参与 K-12 教育工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Montserrat Fuentes其他文献
Montserrat Fuentes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Montserrat Fuentes', 18)}}的其他基金
Spatial-temporal models and methods for big nonstationary multivariate
大非平稳多元时空模型和方法
- 批准号:
1723158 - 财政年份:2016
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: RNMS Statistical methods for atmospheric and oceanic sciences
合作研究:RNMS 大气和海洋科学统计方法
- 批准号:
1107046 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
CMG: Multivariate Nonstationary Spatial Extremes in Climate and Atmospherics
CMG:气候和大气中的多元非平稳空间极值
- 批准号:
0934595 - 财政年份:2009
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Multivariate space-time models and methods to combine large disparate spatial data and numerical models
结合大量不同空间数据和数值模型的多元时空模型和方法
- 批准号:
0706731 - 财政年份:2007
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Travel support for the IMS-ISBA international conference
IMS-ISBA 国际会议的差旅支持
- 批准号:
0419627 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Estimation, Modeling and Prediction of Nonseparable and Nonstationary Space-Time Processes
不可分离和非平稳时空过程的估计、建模和预测
- 批准号:
0353029 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Proposal: ISI and TIES Conference Support Program
合作提案:ISI 和 TIES 会议支持计划
- 批准号:
0304954 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Spatial Modeling, Analysis and Prediction of Nonstationary Environmental Processes
非平稳环境过程的空间建模、分析和预测
- 批准号:
0002790 - 财政年份:2000
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
下托的生长抑素阳性神经元在颞叶癫痫中的作用及环路重构机制研究
- 批准号:82304460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A识别蛋白YTHDC2通过星形胶质细胞LCN2调控IKK/NF-κB/TNFα轴在颞叶癫痫的作用及机制研究
- 批准号:82371463
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
下托投射的胆碱能神经亚群促进颞叶癫痫形成的作用及机制研究
- 批准号:82373859
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
熊果酸通过靶向调控Reelin改善慢性颞叶癫痫和认知损伤的机制研究
- 批准号:82360711
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Elucidating the Neural Computations Underlying Spatial Learning, Decision-Making and Generalization in Virtually-Navigating Monkeys
阐明虚拟导航猴子空间学习、决策和泛化背后的神经计算
- 批准号:
10723874 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Project 1: 3-D Molecular atlas of the aging brain
项目 1:衰老大脑的 3D 分子图谱
- 批准号:
10555897 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Progression of Entorhinal-hippocampal Spatial and Emotional Processing Deficits in a Mouse Model of Temporal Lobe Epilepsy
颞叶癫痫小鼠模型内嗅海马空间和情绪处理缺陷的进展
- 批准号:
10829101 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Biomechanics of muscle after rotator cuff tear: Multi-scale assessment of spatial and temporal effects
肩袖撕裂后肌肉的生物力学:空间和时间影响的多尺度评估
- 批准号:
10556219 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别: