Geometric structures and invariants of links and 3-manifolds

链接和 3 流形的几何结构和不变量

基本信息

  • 批准号:
    1404754
  • 负责人:
  • 金额:
    $ 22.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-15 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

The research of this project falls in the area of 3-dimensional topology. The central objects of study in this area are spaces called 3-manifolds. A 3-manifold is an object that locally looks like the ordinary 3- dimensional space but whose global structure can be complicated. An important part of 3-dimensional topology is also the study of knots (loops embedded in some tangled way in 3-manifolds) and their classification. The solution of Thurston's Geometrization Conjecture has established that 3-manifolds (and complements of knots in them) decompose into pieces that admit explicit geometries and that hyperbolic geometry is the one that appears more often. In practice, however, 3-manifolds are often given in terms of combinatorial topological descriptions and it is both natural and important to seek ways to deduce geometric information from these descriptions. One of the ways that topologists have been approaching the study of 3- manifolds is through the use of invariants. In the last few decades ideas originated in physics led mathematicians to the discovery of a variety of invariants of knots and 3-manifolds. Understanding the connections of topological and combinatorial quantities and invariants to geometry is a central and important goal of low dimensional topology. The main theme of this project is to establish such connections and explore their ramifications and applications to other areas of mathematics.This project will establish relationships between geometry and combinatorial descriptions, properties, and quantum invariants of links and 3-manifolds. The PI has developed a setting for establishing new unexpected relations between the colored Jones link polynomials, the topology and geometry of essential surfaces in link complements, and hyperbolic geometry. One part of the project will continue developing this theory and exploring its applications. Another part, will combine several new techniques, to develop methods for recognizing geometric structures on 3-manifolds from purely combinatorial input, and derive estimates on geometric quantities from topological data. A third part will study skein link theory in 3-manifolds, its invariants, and its interaction with geometric decompositions of 3-manifolds. A fourth part will explore the applicability of quantum knot invariants to classical questions in knot theory and search for a classification of crossing changes that do not alter the topology of the underlying knots. The project also involves the research of graduate students currently working with PI.
该项目的研究属于三维拓扑领域。在该领域的研究中心对象是称为3个manifolds的空间。 3个manifold是一个本地看起来像普通的3维空间,但其整体结构可能很复杂的对象。三维拓扑结构的重要组成部分是对结的研究(嵌入了3个manifolds中的某种纠结的循环)及其分类。 Thurston的几何化猜想的解决方案已经确定,3个manifolds(以及其中的结的补充)分解为散布明确的几何形状的碎片,并且双曲线几何形状是更频繁的。但是,实际上,通常根据组合拓扑描述给出3个manifolds,寻求从这些描述中推断几何信息的方法是自然而重要的。拓扑师一直在研究3歧管的研究之一是通过使用不变性。在过去的几十年中,源于物理学的想法导致数学家发现了各种不变的结和3个manifolds。了解拓扑和组合数量以及与几何形状的连接是低维拓扑的核心和重要目标。该项目的主题是建立这种联系并探索其对数学其他领域的后果和应用。该项目将在几何形状与组合描述,属性和链接和3个manifolds的量子不变性之间建立关系。 PI开发了一个设置,以建立彩色琼斯链接多项式之间的新意外关系,链接补充中必需表面的拓扑和几何形状以及双曲线几何形状。该项目的一部分将继续发展该理论并探索其应用。另一部分将结合几种新技术,以开发从纯粹组合输入的3个manifolds上识别几何结构的方法,并从拓扑数据中得出对几何数量的估计。第三部分将研究3个manifolds,其不变性的链条链接理论,以及与3个manifolds几何分解的相互作用。 第四部分将探索量子结不变性在结理论中的经典问题上的适用性,并寻找不会改变基础结拓扑的交叉变化的分类。该项目还涉及目前与PI合作的研究生的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Efstratia Kalfagianni其他文献

Cosmetic crossings and Seifert matrices
修饰交叉点和 Seifert 矩阵
Remarks on Jones Slopes and Surfaces of Knots
  • DOI:
    10.1007/s40306-020-00400-3
    10.1007/s40306-020-00400-3
  • 发表时间:
    2020-02
    2020-02
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Efstratia Kalfagianni
    Efstratia Kalfagianni
  • 通讯作者:
    Efstratia Kalfagianni
    Efstratia Kalfagianni
Higher degree knot adjacency as obstruction to fibering
较高程度的结邻接会阻碍纤维化
  • DOI:
  • 发表时间:
    2004
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratia Kalfagianni;Xiaoxia Lin
    Efstratia Kalfagianni;Xiaoxia Lin
  • 通讯作者:
    Xiaoxia Lin
    Xiaoxia Lin
Constructions of $q$-hyperbolic knots
$q$-双曲结的构造
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratia Kalfagianni;Joseph M. Melby
    Efstratia Kalfagianni;Joseph M. Melby
  • 通讯作者:
    Joseph M. Melby
    Joseph M. Melby
Pants complex, TQFT and hyperbolic geometry
裤子复杂、TQFT 和双曲几何
  • DOI:
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Renaud Detcherry;Efstratia Kalfagianni
    Renaud Detcherry;Efstratia Kalfagianni
  • 通讯作者:
    Efstratia Kalfagianni
    Efstratia Kalfagianni
共 37 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往

Efstratia Kalfagia...的其他基金

Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Geometric and Quantum Structures of 3-Manifolds
三流形的几何和量子结构
  • 批准号:
    2004155
    2004155
  • 财政年份:
    2020
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Geometric Aspects Knot and 3-manifold Invariants
几何方面结和 3 流形不变量
  • 批准号:
    1708249
    1708249
  • 财政年份:
    2017
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Invariants and geometry of knots and 3-manifolds
结和 3 流形的不变量和几何
  • 批准号:
    1105843
    1105843
  • 财政年份:
    2011
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Topics in 3-dimensional topology
3 维拓扑主题
  • 批准号:
    0805942
    0805942
  • 财政年份:
    2008
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: FRG: Hyperbolic Geometry and Jones Polynomials
合作研究:FRG:双曲几何和琼斯多项式
  • 批准号:
    0456155
    0456155
  • 财政年份:
    2005
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Knot and 3-manifold invariants and Dehn surgery
结和 3 流形不变量以及 Dehn 手术
  • 批准号:
    0306995
    0306995
  • 财政年份:
    2003
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Knot and 3-Manifold Invariants, Seifert Surfaces and Dehn Surgery
结和 3 流形不变量、Seifert 曲面和 Dehn 手术
  • 批准号:
    0104000
    0104000
  • 财政年份:
    2001
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9996227
    9996227
  • 财政年份:
    1998
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9626140
    9626140
  • 财政年份:
    1996
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

非线性可积系统的几何结构与奇性分析
  • 批准号:
    11631007
  • 批准年份:
    2016
  • 资助金额:
    230.0 万元
  • 项目类别:
    重点项目
基于局部不变性特征和几何结构相似性的异源遥感影像自动配准
  • 批准号:
    41401369
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于旋转不变Gabor特征的视频动态几何与纹理提取技术研究
  • 批准号:
    61202154
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于微分几何同调的微电网等值建模理论与模型降阶方法
  • 批准号:
    51177113
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
齐性空间上的不变几何结构及其代数问题
  • 批准号:
    10671096
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Invariants and Geometric Structures
量子不变量和几何结构
  • 批准号:
    1812008
    1812008
  • 财政年份:
    2018
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Standard Grant
    Standard Grant
Invariants, geometric and discrete structures on manifolds.
流形上的不变量、几何和离散结构。
  • 批准号:
    DP160104502
    DP160104502
  • 财政年份:
    2016
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Discovery Projects
    Discovery Projects
Relations between invariants of low-dimensional manifolds and their geometric structures
低维流形不变量与其几何结构的关系
  • 批准号:
    24540076
    24540076
  • 财政年份:
    2012
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Iterated integrals, geometric structures of configuration spaces and applications to quantum topological invariants
迭代积分、配置空间的几何结构以及量子拓扑不变量的应用
  • 批准号:
    23340014
    23340014
  • 财政年份:
    2011
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Integrable homogeneous geometric structures and invariants
可积齐次几何结构和不变量
  • 批准号:
    23540090
    23540090
  • 财政年份:
    2011
  • 资助金额:
    $ 22.44万
    $ 22.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)