Conduction and Mechanical Properties of Single-Ion Conducting Ionomers
单离子导电离聚物的导电和机械性能
基本信息
- 批准号:1404586
- 负责人:
- 金额:$ 57.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY: Ionomers based on polar monomers are an important class of energy materials for applications that require single-ion conduction. In this research, three novel types of materials are being made: (1) High molecular weight Reversible Addition-Fragmentation chain Transfer (RAFT) ionomers that are random copolymers of an anionic monomer and a polar solvating monomer, (2) RAFT diblock copolymers with one ionomeric random copolymer conducting block and one structural block and (3) polar low-Tg (glass transition temperature) non-volatile plasticizers. By fully understanding the dielectric and viscoelastic response of the RAFT copolymer ionomers, the optimal compositions for conduction of Li counterions will be identified and then RAFT diblock copolymers will be prepared with identical composition of the soft block. In this way, the effects of confinement to lamellar or cylinder phases can be identified, using also X-ray scattering to detail morphology. The linear viscoelastic response of these polymers will be understood using simple extensions of Rouse and reptation models to include the effects of ion association lifetimes. Polar low-Tg non-volatile plasticizers will be added to those materials to boost ion conductivity and dielectric constant of the soft domains, while lowering Tg. Thus far, siloxane oligomers with polar solvating side chains seem best, owing to their very low T (between -80 C and -60 C). By exploring the parameter space of ion content, polarity and specific solvation ability of both the comonomer and the plasticizer, the goal is to guide future materials design in the energy materials arena. For the diblock copolymers the modulus near room temperature is also crucial and the effects of these parameter variations on modulus will be measured to understand the tradeoff between ion conduction and mechanical properties, and their link to morphology and the amount of plasticizer in each microphase.NON-TECHNICAL SUMMARY: Applications that will be enabled by new materials in the energy arena simultaneously require high conductivity of one (and only one) type of ion and good mechanical strength. This research on ion conduction and mechanical properties of polymeric energy materials aims to understand the structure-property relations in polymers that conduct only one type of ion, such as lithium for advanced batteries. One strong advantage of developing materials for lithium ion transport that only conduct lithium (single-ion conductors as opposed to the lithium salts used in batteries today that also must conduct a negatively charged ion) is that both battery charging and access to the power of the battery could be as much as 100 times faster. If successful, the fundamental knowledge generated from this research will result in the understanding needed to design polymeric materials for a variety of specific energy applications, including advanced batteries, fuel cells, solar cells, ionic actuators, supercapacitors and energy harvesting devices; each of which require ion transport and mechanical strength. These applications offer societal benefits that may improve the lives of humans across the globe. Additionally, the project will involve education and training of graduate and undergraduate students.
技术摘要:基于极性单体的离聚物是一类重要的能源材料,适用于需要单离子传导的应用。 在这项研究中,正在制造三种新型材料:(1)高分子量可逆加成断裂链转移(RAFT)离聚物,它是阴离子单体和极性溶剂化单体的无规共聚物,(2)RAFT二嵌段共聚物一种离聚物无规共聚物导电嵌段和一种结构嵌段以及(3)极性低Tg(玻璃化转变温度)非挥发性增塑剂。 通过充分了解 RAFT 共聚物离聚物的介电和粘弹性响应,将确定传导 Li 抗衡离子的最佳组成,然后用相同的软嵌段组成制备 RAFT 二嵌段共聚物。 通过这种方式,可以识别层状或柱状相的限制效应,同时还使用 X 射线散射来详细描述形态。 这些聚合物的线性粘弹性响应将通过劳斯和蠕动模型的简单扩展来理解,以包括离子缔合寿命的影响。 这些材料中将添加极性低Tg非挥发性增塑剂,以提高软域的离子电导率和介电常数,同时降低Tg。 到目前为止,具有极性溶剂化侧链的硅氧烷低聚物似乎是最好的,因为它们的 T 值非常低(-80℃ 至 -60℃ 之间)。 通过探索共聚单体和增塑剂的离子含量、极性和特定溶剂化能力的参数空间,目标是指导能源材料领域的未来材料设计。 对于二嵌段共聚物,接近室温的模量也至关重要,将测量这些参数变化对模量的影响,以了解离子传导和机械性能之间的权衡,以及它们与形态和每个微相中增塑剂含量的联系。 -技术摘要:新材料在能源领域的应用同时需要一种(且仅一种)离子类型的高电导率和良好的机械强度。 这项关于聚合物能源材料的离子传导和机械性能的研究旨在了解仅传导一种离子的聚合物的结构-性能关系,例如用于先进电池的锂。开发仅传导锂的锂离子传输材料(单离子导体,与当今电池中使用的锂盐相反,锂盐也必须传导带负电荷的离子)的一个强大优势是,电池充电和获得电源的能力都可以实现。电池的速度可能快 100 倍。 如果成功,这项研究产生的基础知识将有助于理解设计用于各种特定能源应用的聚合物材料,包括先进电池、燃料电池、太阳能电池、离子执行器、超级电容器和能量收集设备;每一个都需要离子传输和机械强度。 这些应用程序提供的社会效益可能会改善全球人类的生活。 此外,该项目还将涉及研究生和本科生的教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Colby其他文献
Ralph Colby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Colby', 18)}}的其他基金
Collaborative Research: Robust General Methods for Determination of Polyelectrolyte Molecular Weight and Polydispersity
合作研究:测定聚电解质分子量和多分散性的稳健通用方法
- 批准号:
2203746 - 财政年份:2022
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
Fundamental Studies of Flow-Induced Polymer Crystallization
流动诱导聚合物结晶的基础研究
- 批准号:
2218775 - 财政年份:2022
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Basis for General Molecular Weight Determination for Ionic Polymers
合作研究:离子聚合物通用分子量测定的基础
- 批准号:
1904852 - 财政年份:2019
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
Energy materials based on single-ion conducting polymers mixed with zwitterions
基于与两性离子混合的单离子导电聚合物的能源材料
- 批准号:
1807934 - 财政年份:2018
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
SusChEM: Rheology of Cellulose and other Biopolymers in Ionic Liquids
SusChEM:离子液体中纤维素和其他生物聚合物的流变学
- 批准号:
1506589 - 财政年份:2015
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
Collaborative: Viscoelasticity of Nanoparticle Dispersed Polymer Melts: Experiment and Simulation
协作:纳米颗粒分散聚合物熔体的粘弹性:实验与模拟
- 批准号:
1006659 - 财政年份:2010
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
Controlling Rheology by Tuning Colloidal Interactions
通过调节胶体相互作用来控制流变
- 批准号:
1033851 - 财政年份:2010
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
First Principles Design of Ionomers for Facile Ion Transport
方便离子传输的离聚物的第一原理设计
- 批准号:
0933391 - 财政年份:2009
- 资助金额:
$ 57.2万 - 项目类别:
Standard Grant
Colloidal Polymer Chains: Construction, Statics and Dynamics
胶体聚合物链:结构、静力学和动力学
- 批准号:
0730780 - 财政年份:2007
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
Collaborative: The Polyelectrolyte-Ionomer Transition in Polymers
合作:聚合物中的聚电解质-离聚物转变
- 批准号:
0705745 - 财政年份:2007
- 资助金额:
$ 57.2万 - 项目类别:
Continuing Grant
相似国自然基金
南疆长期滴灌作用下枣树根系的动态退化特性与机械扰动复壮机理研究
- 批准号:32360073
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高低水分混配饲料物理机械特性对挤压流变和粘结行为的影响机制解析
- 批准号:52305271
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑超大直径盾构机械特性的施工期地层变形演化机理及风险智能预控技术研究
- 批准号:52378404
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具备人手柔性腱鞘机械智能特性的刚柔耦合灵巧手仿生驱动原理与关键技术
- 批准号:52305043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑制造误差的工程机械发动机凸轮轴转子系统动态行为演变机理与动力学特性研究
- 批准号:12362007
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10628121 - 财政年份:2019
- 资助金额:
$ 57.2万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
9797240 - 财政年份:2019
- 资助金额:
$ 57.2万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
9978842 - 财政年份:2019
- 资助金额:
$ 57.2万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10654797 - 财政年份:2019
- 资助金额:
$ 57.2万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10200845 - 财政年份:2019
- 资助金额:
$ 57.2万 - 项目类别: