Collaborative Research: Advanced Zeolite-Composite Adsorbents with Fine-Tuned Pore Sizes for Molecular Sieving Separations

合作研究:用于分子筛分离的具有微调孔径的先进沸石复合吸附剂

基本信息

项目摘要

PI: Yu, Miao / Liang, XinhuaProposal Number: 1402772 / 1402122Title: Collaborative Research: Advanced Zeolite-Composite Adsorbents with Fine-Tuned Pore Sizes for Molecular Sieving Separations Mixture separation constitutes a large and costly component of industrial processes. Various separation technologies, such as distillation, extraction, adsorption, and membrane separation, have been developed to separate mixtures utilizing different properties of components in the mixture. Among these technologies, separation processes based on adsorption, such as pressure swing adsorption (PSA) and temperature swing adsorption (TSA), have been widely used in industry. Development of more energy-efficient adsorptive gas separation processes strongly depends on the development of improved porous adsorbents, and porous adsorbents with favorable adsorption isotherms and selectivity for the separation of interest are always the focus of adsorption-based separation processes. Zeolites are one of the most promising adsorbents that may realize true molecular-sieving separation under harsh separation conditions, attributing to their uniform, molecular-sized pores and high chemical, thermal and mechanical stabilities. Despite of a large selection pool of zeolites/molecular sieves and available techniques to adjust their pore sizes, not all desired pore sizes can be obtained for target separations, especially for separation of molecules with very close sizes, such as N2 (kinetic diameter: 0.364 nm)/CH4 (0.38 nm), O2 (0.346 nm)/N2, and paraffin/olefin. Therefore, it is highly desirable to develop new strategies to further fine-tune the pore sizes of zeolite-based materials and fill the pore size gaps between different zeolites. The goal of this proposed research is to fine-tune the pore entrance of zeolites by depositing ultrathin microporous coatings to achieve effective separation for industrially important mixtures that traditional zeolites have difficulty to separate. Ultrathin microporous coatings will be deposited using molecular layer deposition (MLD) on the zeolites to fill the pore-size gaps between different zeolites an obtain enhanced fundamental understanding of deposition mechanisms and coating interactions with zeolite substrates. Specifically, the objectives of the proposed research are: (1) To develop a reliable and reproducible MLD process to deposit ultrathin organic/inorganic hybrid films (with precisely controlled properties) on zeolite substrates and obtain a fundamental understanding on the factors that affect the quality of MLD coatings; (2) To elucidate and understand the decomposition of hybrid MLD coating and pore-generation mechanisms under different conditions; (3) To characterize effective pore sizes of zeolite-composite adsorbents and establish the fundamental coating property-pore entrance size relationship; and (4) To rationally design zeolite composite adsorbents with desired pore sizes and investigate separation performance for target mixtures. This completely new concept may lead to effective adsorptive separation of difficult-to-separate mixtures.This proposed research is expected to have great scientific as well as technological impact on the synthesis of nanostructured zeolite-composite adsorbents with fine-tuned pore sizes for mixture separations and potentially for selective catalysis. If successful, the project will greatly benefit adsorption-based separation processes. It will represent a significant advance in the rational design of zeolite-based adsorbents. The proposed research has significant practical implications on industrially important gas mixture separations. It is anticipated that this study could serve as a model for the rational design of advanced sorbents for adsorption-based separation processes.The PIs have specific defined plans to engage a broad range of students in learning about nanomaterials and molecular sieves. Specific opportunities for minorities will be funded through targeted scholarships and projects during the summer. Both PIs are active in outreach programs for K-12 students in mainly underrepresented populations in the areas of both universities.
pi:yu,miao / liang,Xinhuaproposal编号:1402772 / 14021222TITLE:协作研究:高级沸石 - 复合材料的吸附剂,具有细微调的孔径,用于分子筛分分离的分离分离构成大量和成本的工业流程。已经开发了各种分离技术,例如蒸馏,提取,吸附和膜分离,以利用混合物中的组件的不同特性分离混合物。在这些技术中,基于吸附的分离过程,例如压力摆动吸附(PSA)和温度摆动吸附(TSA),已广泛用于行业。开发更节能的吸附气体分离过程在很大程度上取决于改善的多孔吸附剂的发展,并且具有良好的吸附等温度和对分离兴趣分离的多孔吸附剂始终是基于崇拜的分离过程的重点。沸石是最有前途的吸附剂之一,可以在恶劣的分离条件下实现真正的分子蛋白蛋白分离,这归因于它们均匀的分子孔以及高化学,热和机械稳定性。 Despite of a large selection pool of zeolites/molecular sieves and available techniques to adjust their pore sizes, not all desired pore sizes can be obtained for target separations, especially for separation of molecules with very close sizes, such as N2 (kinetic diameter: 0.364 nm)/CH4 (0.38 nm), O2 (0.346 nm)/N2, and paraffin/olefin.因此,非常需要制定新的策略,以进一步微调基于沸石的材料的孔径,并填补不同沸石之间的孔径空隙。 这项拟议的研究的目的是通过沉积超薄微孔涂层来微调沸石的孔口,以实现传统沸石很难分离的工业重要混合物的有效分离。超薄微孔涂层将使用沸石上的分子层沉积(MLD)沉积,以填补不同沸石之间的孔径尺寸间隙。具体而言,拟议的研究的目标是:(1)开发可靠且可重复的MLD过程,以沉积超薄有机/无机杂交膜(具有精确控制的特性)对沸石底物上的沉积,并对影响MLD涂料质量的因素获得基本理解; (2)在不同条件下阐明和了解混合MLD涂料和孔产生机制的分解; (3)表征沸石复合材料吸附剂的有效孔径,并建立基本涂料的物业孔的入口关系; (4)至合理设计具有所需孔径的沸石复合吸附剂,并研究目标混合物的分离性能。这个全新的概念可能会导致难以分离混合物的有效吸附性分离。这项拟议的研究有望具有巨大的科学和技术影响,并对纳米结构的沸石复合材料的合成具有微调的孔隙,并具有微调的孔径,用于混合物分离,并有潜在的选择性催化性催化性。如果成功,该项目将极大地有益于基于吸附的分离过程。这将代表基于沸石的吸附剂的理性设计的重大进步。拟议的研究对工业重要的气体混合物分离具有重大实际意义。可以预料,这项研究可以作为用于基于吸附的分离过程的高级吸附剂的合理设计的模型。PIS具有特定的定义计划,以吸引广泛的学生学习纳米材料和分子筛子。少数民族将在夏季通过有针对性的奖学金和项目来资助少数民族的具体机会。这两种PI都活跃于两所大学领域中主要代表人群中的K-12学生的外展计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinhua Liang其他文献

Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma.
长链非编码 RNA HAS2-AS1 介导缺氧诱导的口腔鳞状细胞癌侵袭性。
  • DOI:
    10.1002/mc.22674
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guiquan Zhu;Shaoxin Wang;Jin Chen;Zhaohui Wang;Xinhua Liang;Xiaoyi Wang;Jian Jiang;Jinyi Lang;Ling Li
  • 通讯作者:
    Ling Li
Enhanced stability of Fe-modified CuO-ZnO-ZrO2-Al2O3/HZSM-5 bifunctional catalysts for dimethyl ether synthesis from CO2 hydrogenation
Fe修饰的CuO-ZnO-ZrO2-Al2O3/HZSM-5双功能催化剂提高CO2加氢合成二甲醚的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao;Shoujie Ren;Baitang Jin;Shiguang Li;Miao Yu;Xinhua Liang
  • 通讯作者:
    Xinhua Liang
A dehydration membrane reactor towards highly efficient LPG synthesis via CO<sub>2</sub> hydrogenation
  • DOI:
    10.1016/j.cej.2024.157641
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard J. Ciora;Rumwald Lecaros;Bratin Sengupta;Jinyin Lyu;Kaiying Wang;Xinhua Liang;Shiguang Li;Miao Yu
  • 通讯作者:
    Miao Yu
Low-temperature atomic layer deposition of ZnO films on particles in a fluidized bed reactor
流化床反应器中颗粒上 ZnO 薄膜的低温原子层沉积
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. King;Xinhua Liang;Peng Li;A. Weimer
  • 通讯作者:
    A. Weimer
Small extracellular vesicles containing miR-192/215 mediate hypoxia-induced cancer-associated fibroblast development in head and neck squamous cell carcinoma.
含有 miR-192/215 的小细胞外囊泡介导头颈鳞状细胞癌中缺氧诱导的癌症相关成纤维细胞发育。
  • DOI:
    10.1016/j.canlet.2021.01.006
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Guiquan Zhu;Bangrong Cao;Xinhua Liang;Longjiang Li;Yaying Hao;Wanrong Meng;Chuanshi He;Linlin Wang;Ling Li
  • 通讯作者:
    Ling Li

Xinhua Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinhua Liang', 18)}}的其他基金

Highly Selective, Active, and Stable Metal Nanoparticle Catalysts with Ultra-Thin Porous Ceramic Shells for Size-Selective Chemical Reactions
高选择性、活性和稳定的金属纳米粒子催化剂,具有超薄多孔陶瓷壳,用于尺寸选择性化学反应
  • 批准号:
    2306177
  • 财政年份:
    2022
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Standard Grant
Highly Selective, Active, and Stable Metal Nanoparticle Catalysts with Ultra-Thin Porous Ceramic Shells for Size-Selective Chemical Reactions
高选择性、活性和稳定的金属纳米粒子催化剂,具有超薄多孔陶瓷壳,用于尺寸选择性化学反应
  • 批准号:
    1803812
  • 财政年份:
    2018
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Standard Grant
Collaborative Research: On the Origin of Atomic Layer Deposition Enhanced Activity and Stability of Nanostructured Cathodes for Intermediate-temperature Solid Oxide Fuel Cells
合作研究:中温固体氧化物燃料电池纳米结构阴极的原子层沉积增强活性和稳定性的起源
  • 批准号:
    1464111
  • 财政年份:
    2015
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
  • 批准号:
    12375328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
先进运行模式中稳态远轴内部输运垒的调控机理研究
  • 批准号:
    12375233
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先进堆叠互补场效应晶体管的抗温度涨落特性及增强方法研究
  • 批准号:
    62304263
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Workshop on Advanced Automated Systems, Contestability, and the Law
合作研究:会议:先进自动化系统、可竞争性和法律研讨会
  • 批准号:
    2349804
  • 财政年份:
    2023
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329192
  • 财政年份:
    2023
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Creating Windows Advanced Memory Corruption Attack and Defense Teaching Modules
协作研究:SaTC:EDU:创建 Windows 高级内存损坏攻击和防御教学模块
  • 批准号:
    2325451
  • 财政年份:
    2023
  • 资助金额:
    $ 22.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了