Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
基本信息
- 批准号:1401224
- 负责人:
- 金额:$ 32.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There have recently been many important interactions between number theory and other fields, including dynamical systems and discrete geometry. The connection of number theory with discrete geometry structures via packings leads to connections with problems in materials science. Problems in number theory involving zeta functions and distribution of primes have parallels with problems in mathematical physics. There are further connections of number theory with physical theories such as conformal field theory through modular forms. Number theory structure appears in some exactly solvable models of phase transitions in physical models. The proposal investigates several possible areas of contact between fields, which may lead to fruitful interactions with researchers in physics and material sciences. The grant will support the training of graduate students in these areas. Dr. Lagarias will investigate several independent topics interacting among these fields. The first, and main, topic continues the investigation of the Lerch zeta function, which is a function of three variables, that on specializing variables yields the Hurwitz zeta function and Riemann zeta function. A connection is made with the representation theory of the Heisenberg group and related groups, and the project aims to connect it more closely to automorphic representations on various groups. A second topic concerns two exploratory projects; one concerns a certain family of virtual representations of the symmetric groups, which arises as a degenerate limit of splitting properties of polynomials (modulo p), associated to properties of the discriminant locus of the polynomial. It asks if there is an underlying geometric structure explaining the observed limit properties, possibly with an associated dynamical system. Another exploratory project studies polyharmonic modular forms, which are functions with modular invariance that are annihilated by a power of the Laplacian. A third topic is to investigate of circle packings on Riemann surfaces, a topic in the area of discrete geometry. It considers formulation of scaling limits of such packings in two directions, a complex variables limit and a Diophantine approximation limit. Whether or not this can be done precisely, special questions are proposed to initially investigate these areas, including study of surfaces having rigid packings with a finite number of circles.
最近,数论与其他领域(包括动力系统和离散几何)之间出现了许多重要的相互作用。数论通过堆积与离散几何结构的联系导致了与材料科学问题的联系。数论中涉及 zeta 函数和素数分布的问题与数学物理中的问题有相似之处。 数论与物理理论(例如通过模形式的共形场论)有进一步的联系。数论结构出现在物理模型中一些可精确求解的相变模型中。该提案调查了多个领域之间可能接触的领域,这可能会导致与物理和材料科学研究人员的富有成效的互动。这笔赠款将支持这些领域研究生的培训。 Lagarias 博士将研究这些领域之间相互作用的几个独立主题。第一个也是主要主题继续研究 Lerch zeta 函数,它是三个变量的函数,在专门变量上产生 Hurwitz zeta 函数和 Riemann zeta 函数。与海森堡群和相关群的表示理论建立了联系,该项目旨在将其与各种群的自同构表示更紧密地联系起来。第二个主题涉及两个探索性项目;其中一个涉及对称群的虚拟表示的某个族,它作为多项式分裂属性(模 p)的简并极限而出现,与多项式判别轨迹的属性相关。它询问是否存在解释观察到的极限属性的潜在几何结构,可能具有相关的动力系统。另一个探索性项目研究多调和模形式,它们是具有模不变性的函数,被拉普拉斯算子的幂所消除。第三个主题是研究黎曼曲面上的圆堆积,这是离散几何领域的一个主题。它考虑了此类填料在两个方向上的缩放极限的制定,即复杂变量极限和丢番图近似极限。无论这是否可以精确地完成,都提出了特殊问题来初步研究这些领域,包括研究具有有限数量圆的刚性填料的表面。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Lerch Zeta function III. Polylogarithms and special values
Lerch Zeta 函数 III。
- DOI:10.1186/s40687-015-0049-2
- 发表时间:2016
- 期刊:
- 影响因子:1.2
- 作者:Lagarias, Jeffrey C.;Li, Wen-Ching Winnie
- 通讯作者:Li, Wen-Ching Winnie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Lagarias其他文献
Jeffrey Lagarias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Lagarias', 18)}}的其他基金
Zeta Integrals, Discrete Number Theory and Geometry
Zeta 积分、离散数论和几何
- 批准号:
1701576 - 财政年份:2017
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
Applications of Random Matrix Theory to Analytic Number Theory
随机矩阵理论在解析数论中的应用
- 批准号:
1701577 - 财政年份:2017
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Topics in Number Theory and Geometry: Zeta Functions and Circle Packings
数论和几何主题:Zeta 函数和圆堆积
- 批准号:
1101373 - 财政年份:2011
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
Eisenstein Series, Operators and L-Functions
艾森斯坦级数、运算符和 L 函数
- 批准号:
0801029 - 财政年份:2008
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
The Circle Method as an Interface of Arithmetic Geometry, Additive Combinatorics and Harmonic Analysis
圆法作为算术几何、加法组合学和调和分析的接口
- 批准号:
0601367 - 财政年份:2006
- 资助金额:
$ 32.19万 - 项目类别:
Continuing Grant
相似国自然基金
数字化赋能农业企业组织韧性提升:理论机制与实证研究
- 批准号:72371105
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
服务贸易数字化的理论与实证研究:基于电影行业的视角
- 批准号:72373049
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
数字经济与实体经济融合驱动中国城市体系演化的理论机制和经济福利效应研究
- 批准号:72373073
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
货币搜寻视角下的数字货币–理论及其应用
- 批准号:72303079
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高端装备运维数字孪生理论与方法研究
- 批准号:72371096
- 批准年份:2023
- 资助金额:43 万元
- 项目类别:面上项目
相似海外基金
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
- 批准号:
567986-2022 - 财政年份:2022
- 资助金额:
$ 32.19万 - 项目类别:
Postdoctoral Fellowships
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2022
- 资助金额:
$ 32.19万 - 项目类别:
Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
- 批准号:
2200565 - 财政年份:2022
- 资助金额:
$ 32.19万 - 项目类别:
Standard Grant
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2021
- 资助金额:
$ 32.19万 - 项目类别:
Discovery Grants Program - Individual