EAGER: Define and Construct an Enhanced Graph Representation for Multiscale Vector Field Data Summarization

EAGER:定义和构建多尺度矢量场数据汇总的增强图形表示

基本信息

  • 批准号:
    1352722
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Vector field data analysis is indispensable for many applications in science and engineering, ranging from climate study, physics, chemistry, automobile design, to medical practice. Most existing analysis techniques for vector field data are not scalable to the real-world data with ever-increasing sizes and complexity. More importantly, the inherent limited visual perception channel largely constrains the ability to understand the complex geometric and physical behaviors of vector fields as a whole or in detail. To address these challenges, this exploratory project investigates a graph-based vector field data reduction for the subsequent extraction of a multi-scale vector field data summary. The summary serves as a condensed, yet informative, representation of the original vector field, supporting data interpretation and interaction and shielding the user from the underlying complexity of the flow dynamics. The key to computing such a summary representation is the construction of a novel, enhanced graph representation that encodes both the global structural information and local characteristics of the vector field, as well as other derived information. The approach focuses on development and validation of critical issues in graph-based vector field data reduction , including; (1) identification of the key information of a vector field for the construction of the enhanced graph: (2) efficient storage of the graph; and (3) new graph algorithms for extracting features of interest from the obtained graph. To address these issues, theories and algorithms from dynamical system, algebraic topology, tensor calculus, information theory, and graph theory are extended and integrated in a novel framework. To validate the approach, the PI is working closely with domain scientists from mechanical engineering and aerodynamics to receive advice on the representation of the summary and its utility in specific applications. The expected results in vector field summary represents will yield an important addition to the existing summarization techniques for various data forms. The analysis and abstraction are based on the enhanced graph and can enrich the conventional graph theory and graph algorithms. The ability to handle both steady and unsteady vector fields improves the theory and practice of dynamical systems in describing fluid dynamic phenomena, benefiting a wide variety of disciplines. Knowledge learned from the vector field summarization can be adapted to the study of summarized representation of more complex geometric data, such as tensor field data. In addition, the research on vector field summary represents one step towards a unified framework of knowledge discovery and integrity from heterogeneous data forms. The developed techniques are expected to be implemented as a software tool that will be applicable in a wider range of scientific and engineering domains. Furthermore, the new theory stemming from this work is expected to enrich the existing education on data analysis and visualization, enabling the development of new courses at both undergraduate and graduate levels in many academic disciplines. The project web site (http://www2.cs.uh.edu/~chengu/vf_summary/vf_summary.html) will provide access to project results, including developed software tools.
矢量场数据分析对于科学和工程的许多应用都是不可或缺的,从气候研究、物理、化学、汽车设计到医疗实践。大多数现有的矢量场数据分析技术无法扩展到规模和复杂性不断增加的现实世界数据。更重要的是,固有的有限视觉感知通道在很大程度上限制了从整体或细节上理解矢量场的复杂几何和物理行为的能力。 为了应对这些挑战,这个探索性项目研究了基于图的矢量场数据缩减,以便随后提取多尺度矢量场数据摘要。该摘要作为原始矢量场的浓缩但信息丰富的表示,支持数据解释和交互,并使用户免受流动动力学的潜在复杂性的影响。计算这种摘要表示的关键是构建一种新颖的增强型图表示,该表示对向量场的全局结构信息和局部特征以及其他派生信息进行编码。该方法侧重于基于图的矢量场数据缩减中关键问题的开发和验证,包括: (1)识别向量场的关键信息以构建增强图;(2)图的高效存储; (3)新的图算法,用于从获得的图中提取感兴趣的特征。 为了解决这些问题,动力系统、代数拓扑、张量微积分、信息论和图论的理论和算法被扩展并集成到一个新的框架中。为了验证该方法,PI 正在与机械工程和空气动力学领域的科学家密切合作,以获取有关摘要的表示及其在特定应用中的实用性的建议。矢量场汇总所表示的预期结果将对各种数据形式的现有汇总技术产生重要的补充。基于增强图的分析和抽象可以丰富传统的图论和图算法。处理稳定和不稳定矢量场的能力改进了动力系统在描述流体动力学现象方面的理论和实践,使许多学科受益。从矢量场概括中学到的知识可以适用于更复杂的几何数据(例如张量场数据)的概括表示的研究。此外,向量场概括的研究代表着向异构数据形式的知识发现和完整性的统一框架迈出了一步。开发的技术预计将作为软件工具实现,适用于更广泛的科学和工程领域。 此外,这项工作产生的新理论预计将丰富现有的数据分析和可视化教育,从而能够在许多学科的本科和研究生水平上开发新课程。该项目网站(http://www2.cs.uh.edu/~chenu/vf_summary/vf_summary.html)将提供对项目成果的访问,包括开发的软件工具。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An integral curve attribute based flow segmentation
基于积分曲线属性的流量分割
  • DOI:
    10.1007/s12650-015-0336-4
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Zhang, Lei;Laramee, Robert S.;Thompson, David;Sescu, Adrian;Chen, Guoning
  • 通讯作者:
    Chen, Guoning
Flow Visualization Based on A Derived Rotation Field
基于导出旋转场的流动可视化
  • DOI:
    10.2352/issn.2470-1173.2016.1.vda-478
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Zhang;Guoning Chen;R. Laramee;D. Thompson;A. Sescu
  • 通讯作者:
    A. Sescu
Compute and Visualize Discontinuity Among Neighboring Integral Curves of 2D Vector Fields
计算并可视化 2D 矢量场相邻积分曲线之间的不连续性
Morse Decomposition of 3D Piecewise Linear Vector Fields
3D 分段线性矢量场的莫尔斯分解
  • DOI:
    10.2352/issn.2470-1173.2016.1.vda-477
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berenjkoub, Marzieh;Chen, Guoning
  • 通讯作者:
    Chen, Guoning
Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields
二维稳态和非稳态矢量场的基于鲁棒性的简化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guoning Chen其他文献

A strategy for inhibitors screening of xanthine oxidase based on colorimetric sensor combined with affinity chromatography technology.
基于比色传感器结合亲和层析技术的黄嘌呤氧化酶抑制剂筛选策略
  • DOI:
    10.1016/j.bios.2024.116510
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Guoning Chen;Shuxian Zhang;Xiaofei Wang;Xiaoxuan Fan;Gidion Wilson;Yuping Sa;Xueqin Ma
  • 通讯作者:
    Xueqin Ma
An Embedded Polygon Strategy for Quality Improvement of 2D Quadrilateral Meshes with Boundaries
用于提高带边界的二维四边形网格质量的嵌入式多边形策略
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muhammad Naeem Akram;Lei Si;Guoning Chen
  • 通讯作者:
    Guoning Chen
Oil-water inversion and its generation at top and bottom of the shallow sandstone reservoir in the Northern Chepaizi area, Junggar Basin, NW China
准噶尔盆地车排子北部地区浅层砂岩油藏顶底油水反转及其生成
  • DOI:
    10.1016/s1876-3804(14)60055-0
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Xiaodong Zhao;Shaochun Yang;Kui Xiang;Guoning Chen;Chunyan Zhu;X. Wei
  • 通讯作者:
    X. Wei
Vortex Boundary Identification using Convolutional Neural Network
使用卷积神经网络识别涡旋边界
  • DOI:
    10.1109/vis47514.2020.00059
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marzieh Berenjkoub;Guoning Chen;Tobias Günther
  • 通讯作者:
    Tobias Günther
Preparation and application of molecularly imprinted polymers for the selective extraction of naringin and genistein from herbal medicines
分子印迹聚合物的制备及其在中药中选择性提取柚皮苷和染料木黄酮的应用
  • DOI:
    10.1039/c9ay01503e
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Zhimin Luo;Aiping Xiao;Guoning Chen;Qi Guo;Chun Chang;Aiguo Zeng;Qiang Fu
  • 通讯作者:
    Qiang Fu

Guoning Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guoning Chen', 18)}}的其他基金

CDS&E: Multi-scale Coherent Structure Extraction and Tracking For Modern CFD Data Analysis
CDS
  • 批准号:
    2102761
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CDS&E: Multi-scale Coherent Structure Extraction and Tracking For Modern CFD Data Analysis
CDS
  • 批准号:
    2102761
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Generating Hierarchical Vector-Valued Data Summaries for Scalable Flow Data Processing, Analysis and Visualization
职业:为可扩展流数据处理、分析和可视化生成分层向量值数据摘要
  • 批准号:
    1553329
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

氧化镓宽禁带半导体辐射诱导缺陷定义及损伤评估
  • 批准号:
    12305300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于前瞻性队列研究探索代谢组学定义的肥胖表型联合眼底影像数据预测糖尿病视网膜病变发生发展的研究
  • 批准号:
    82301236
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同染色定义下的Hadwiger问题研究
  • 批准号:
    12301442
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
定义并解析一类新的白血病类型-RARG重排AML
  • 批准号:
    82370169
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
早-中三叠世之交牙形石Chiosella属的演化谱系研究及其对定义全球奥伦尼克阶-安尼阶界线金钉子的意义
  • 批准号:
    42302019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BBconnect - a people-centred, system aware design feasibility investigation that aims to define innovation opportunities, generate and evaluate viable ideas for more accessible, effective and integrated bladder and bowel healthcare services.
BBconnect - 一项以人为本、系统意识的设计可行性调查,旨在定义创新机会,生成和评估可行的想法,以提供更方便、有效和综合的膀胱和肠道医疗保健服务。
  • 批准号:
    10089501
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
ARISTOTELES - Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
亚里士多德 - 应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
  • 批准号:
    10103153
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
A multidisciplinary approach to define the dynamics of mammalian midline specification using Gastruloids
使用原肠胚来定义哺乳动物中线规格动态的多学科方法
  • 批准号:
    BB/X000907/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
High-dimensional single-cell mapping to define immune signatures of cytomegalovirus-associated rejection in cardiac transplantation
高维单细胞图谱定义心脏移植中巨细胞病毒相关排斥反应的免疫特征
  • 批准号:
    10816183
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Screening using split fluorescent protein tags for neurotransmitter receptors that define a synaptic balance in neuralcircuits
使用分裂荧光蛋白标签筛选神经递质受体,定义神经回路中的突触平衡
  • 批准号:
    10805112
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了