CAREER: Sodium Spinor Condensates and Their Applications in Quantum Information Science

职业:钠自旋凝聚体及其在量子信息科学中的应用

基本信息

  • 批准号:
    1352168
  • 负责人:
  • 金额:
    $ 57.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This CAREER award supports the study and application of massive entanglement and spin-squeezing in quantum information science, in part by implementing the first precise magnetometer with micron spatial resolution and femto-tesla field sensitivity, as well as the development of an efficient scheme to detect and characterize the entanglement. This work is targeted towards applying a sodium spinor Bose-Einstein condensate (BEC) to generate massive entanglement in the vicinity of Dicke states through adiabatic evolution across a quantum phase transition, and to create spin-squeezing via collectively coupling atoms to a light field with a quantum non-demolition measurement. The goals of this research are both of fundamental interest for advancing our understanding of quantum physics, and of technological significance. Its interdisciplinary character envelops a broad spectrum of fields in physics and quantum information theory. Magnetometers, devices constructed to measure the strength and spatial distribution of magnetic fields, are among the most essential and versatile measurement tools available. They are used in a wide variety of applications in all areas of science and industry, such as searching for mineral resources, biomedical imaging for early detection and diagnostics, and the exploration of environmental hazards. As with all measurement techniques, the goals of a magnetometry measurement are to reach a sensitivity that will allow the detection of smaller and smaller quantities and a resolution that will allow pinpointing location to smaller and smaller sizes. The research supported under this CAREER award will incorporate ultracold BECs into proven optical measurement methods for atom magnetometry, which relies on atomic signals for detection, that were previously based on techniques using hot atomic vapors. The new cold atom approach will make it possible to develop magnetometers with enhanced magnetic field sensitivity and spatial resolution. Beyond the important research goals, this CAREER award will provide excellent opportunities to introduce students to modern developments in quantum physics, to involve them in research projects, and to prepare them for a career in science and technology. Two new laboratory courses in physics will be developed to better prepare the students for advanced research. Active efforts will be undertaken to broaden the participation of under-represented groups in this project by involving Native American students, women in physics, and potential ?first-generation? college students in research and educational activities. This CAREER award will enhance the infrastructure for science education in the region and encourage more talented students to pursue a career in science.
该职业奖支持量子信息科学中大规模纠缠和自旋挤压的研究和应用,部分方法是实施第一个具有微米空间分辨率和飞特斯拉场灵敏度的精密磁力计,以及开发一种有效的检测方案并描述纠缠的特征。这项工作的目标是应用钠自旋玻色爱因斯坦凝聚(BEC)通过量子相变的绝热演化在迪克态附近产生大量纠缠,并通过将原子集体耦合到光场来产生自旋挤压量子非破坏测量。这项研究的目标既对增进我们对量子物理学的理解具有根本意义,又具有技术意义。它的跨学科特征涵盖了物理学和量子信息论的广泛领域。磁力计是用于测量磁场强度和空间分布的设备,是最重要、最通用的测量工具之一。 它们在科学和工业的所有领域都有广泛的应用,例如寻找矿产资源、用于早期检测和诊断的生物医学成像以及环境危害的探索。 与所有测量技术一样,磁力测量的目标是达到允许检测越来越小的量的灵敏度和允许精确定位越来越小的尺寸的分辨率。 该职业奖支持的研究将把超冷 BEC 纳入经过验证的原子磁力测量光学测量方法中,该方法依赖原子信号进行检测,而以前基于使用热原子蒸气的技术。 新的冷原子方法将使开发具有增强磁场灵敏度和空间分辨率的磁力计成为可能。除了重要的研究目标之外,该职业奖还将提供绝佳的机会,向学生介绍量子物理学的现代发展,让他们参与研究项目,并为他们在科学和技术领域的职业生涯做好准备。将开发两门新的物理学实验室课程,以便学生更好地为高级研究做好准备。我们将积极努力扩大代表性不足的群体对这个项目的参与,让美国原住民学生、物理学界的女性和潜在的“第一代”参与进来。大学生从事研究和教育活动。该职业奖将加强该地区科学教育的基础设施,并鼓励更多有才华的学生从事科学事业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingmei Liu其他文献

Observation of dynamical quantum phase transitions in a spinor condensate
旋量凝聚中动态量子相变的观察
  • DOI:
    10.1103/physreva.100.013622
  • 发表时间:
    2019-07-17
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    H.;T. Tian;Yuxiang Yang;L.;H;A. Chu;Ceren B. Dağ;Yong Xu;Yingmei Liu;L. Duan
  • 通讯作者:
    L. Duan
Highly sensitive and quick response carbon dioxide sensor based on sol–gel film coated four-leaf clover fiber mode interferometer
基于溶胶凝胶薄膜涂层四叶草光纤模式干涉仪的高灵敏快速响应二氧化碳传感器
  • DOI:
    10.1016/j.infrared.2024.105321
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zijuan Tang;Ying Jin;Yingmei Liu;Shuqin Lou;Haoqiang Jia
  • 通讯作者:
    Haoqiang Jia
Detecting topological phase transitions in a double kicked quantum rotor
检测双踢量子转子中的拓扑相变
  • DOI:
    10.1103/physreva.106.043318
  • 发表时间:
    2022-10-19
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Nikolai Bolik;C. Groiseau;J. Clark;G. Summy;Yingmei Liu;S. Wimberger
  • 通讯作者:
    S. Wimberger
Evidence for superfluidity of ultracold fermions in an optical lattice
光学晶格中超冷费米子超流性的证据
  • DOI:
    10.1038/nature05224
  • 发表时间:
    2006-07-03
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    J. K. Chin;D. E. Miller;Yingmei Liu;C. Stan;C. Stan;W. Setiawan;C. Sanner;K. Xu;W. Ketterle
  • 通讯作者:
    W. Ketterle
Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections
耐碳青霉烯类肠杆菌院内感染的危险因素和临床结果
  • DOI:
    10.1007/s10096-016-2710-0
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Wang;Yawei Zhang;Xuexin Yao;Haipeng Xian;Yingmei Liu;Hui Li;Hongbin Chen;Xiaojuan Wang;Ruobing Wang;Chunjiang Zhao;Bin Cao;Hui Wang
  • 通讯作者:
    Hui Wang

Yingmei Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingmei Liu', 18)}}的其他基金

Nonequilibrium Dynamics and Site-Resolved Imaging in a Three-Dimensional Spinor Bose-Hubbard Model Quantum Simulator
三维旋量玻色-哈伯德模型量子模拟器中的非平衡动力学和位点分辨成像
  • 批准号:
    2207777
  • 财政年份:
    2022
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant
Novel Quantum Phase Transitions and Non-Equilibrium Dynamics in Lattice-Confined Spinor Condensates
晶格限制旋量凝聚中的新型量子相变和非平衡动力学
  • 批准号:
    1912575
  • 财政年份:
    2019
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant

相似国自然基金

层状高熵金属氧化物正极材料的组分调控与储钠机制及其载流子输运特性
  • 批准号:
    52374301
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超氧化物基钠金属−空气电池的高相容性电解液研究及界面优化
  • 批准号:
    52301280
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多层压电驱动器用铌酸钾钠与铁酸铋基无铅陶瓷结构演变与性能协同优化研究
  • 批准号:
    52311530094
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
梯度亲钠纳米结构堆用高温热管复合吸液芯的吸钠铺展及传热特性研究
  • 批准号:
    12305174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型钠基层状氧化物阴离子氧化还原反应的稳定调控机制研究
  • 批准号:
    22379146
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Electrolyte design for high-performance, sustainable sodium batteries
高性能、可持续钠电池的电解质设计
  • 批准号:
    DE240100480
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Discovery Early Career Researcher Award
Towards innovative and affordable sodium- and zinc-based energy storage systems based on more sustainable and locally-sourced materials (eNargiZinc)
开发基于更可持续和本地采购的材料的创新且经济实惠的钠基和锌基储能系统 (eNargiZinc)
  • 批准号:
    EP/Y03127X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Research Grant
Room Temperature High Energy Density Sodium-Sulfur Batteries
室温高能量密度钠硫电池
  • 批准号:
    DP240101548
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Discovery Projects
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325463
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了