REU site: Complexity Across Disciplines (CAD)
REU 网站:跨学科复杂性 (CAD)
基本信息
- 批准号:1359425
- 负责人:
- 金额:$ 28.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant funds the REU site "Complexity Across Disciplines" at Boise State University, hosted in the Department of Mathematics. This site seeks to produce cohorts of young researchers whose work and vision transcend current boundaries between STEM disciplines. The research mentors will each engage a team of nationally recruited undergraduate students in a research project with strong interdisciplinary scope and based on finitary mathematical structures. The mathematical foundations for these projects include algebraic structures, combinatorial structures and game theory. Each of the cohorts of ten REU researchers will be thoroughly engaged in contemporary research problems with applications to cryptology, biology and several other fields of inquiry. The projects have deep connections with important open problems in mathematics, and could lead to discoveries of importance to the security of currently commercially used cryptosystems. The idea to examine certain genomic rearrangement processes from a game-theoretic point of view is new to the field, has inherent value as a mathematical exploration, and has the potential to clarify observed phenomena in natural rearrangement processes. The study of splitting systems could give new insights into mathematical tools for medical, chemical and electrical testing as well as error correction.The nature of computing and complexity has expanded from the academic to the practical arena through great strides in scientific understanding of basic processes of life, the biggest transformation in information processing in history through invention of the internet, and automation of all basic tasks in our daily lives. The need to understand fundamental limitations on computing, thus on basic processes of life, daily living and information processing, has never been greater. The research projects featured at this site ultimately relate to the question of limitations on computing. The motivations for the offered projects arise from the quest for efficient search or sorting algorithms and for efficient information security tools. The research direction of this REU program and its projects are guided by experienced mentors that include an early career investigator, a female researcher and a senior scientist. Through its recruitment process this program brings undergraduate research experiences to students from institutions across the nation where such opportunities are limited. By involving the REU students in intellectual outreach activities targeting K-12 students through the REU site's partnership with the NASA funded Idaho Science and Aerospace Scholars, students from rural communities with limited opportunities have one-on-one exposure to highly motivated STEM students from across the nation. This outreach activity has the potential to transform the vision of the K-12 students about their own careers in a STEM field. The site offers, in collaboration with several other summer undergraduate research programs at Boise State University, a rich array of professional and interdisciplinary development events.
这项赠款为位于数学系的博伊西州立大学的REU网站“跨学科的复杂性”提供了资金。该站点旨在生产一群年轻的研究人员,他们的工作和视力超越了STEM学科之间的当前边界。研究导师将分别与一支由全国招募的本科生组成的团队,并具有强大的跨学科范围,并基于最终的数学结构。这些项目的数学基础包括代数结构,组合结构和游戏理论。十名REU研究人员的每一人群都将彻底参与当代研究问题,这些问题与密码学,生物学和其他几个探究领域有关。这些项目与数学上的重要开放问题具有深厚的联系,并可能导致对当前商业使用的密码系统的安全性的重要性。从游戏理论的角度检查某些基因组重排过程的想法是该领域的新事物,具有固有的价值作为数学探索,并且有潜力阐明自然重排过程中观察到的现象。对分裂系统的研究可以为用于医学,化学和电气测试的数学工具以及错误纠正提供新的见解。计算和复杂性的性质已通过对生活的基本过程的科学理解,从学术过程中的大步发展,从学术到实践领域,这是通过对我们的所有基本工作进行自动化的历史处理中最大的信息处理过程的最大变化。了解计算的基本限制的需求,因此在生活,日常生活和信息处理的基本过程中的需求从未有所更大。该站点的研究项目最终与计算局限性问题有关。提供的项目的动机来自于寻求有效的搜索或分类算法以及有效的信息安全工具。该REU计划及其项目的研究方向由经验丰富的导师指导,其中包括早期职业研究员,女性研究人员和高级科学家。通过其招聘过程,该计划将本科生的研究经验带给了来自全国各地的学生的学生。通过让REU学生通过REU网站与NASA资助的爱达荷州科学和航空航天学者的合作,针对K-12学生的知识外展活动,机会有限的农村社区的学生一对一地接触来自全国各地的高度动机的STEM学生。这种外展活动有可能改变K-12学生对自己在STEM领域的职业生涯的愿景。该网站与博伊西州立大学的其他几个夏季本科研究计划合作提供了一系列专业和跨学科发展活动。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying CDS sortability of permutations by strategic pile size
按策略堆大小量化排列的 CDS 可排序性
- DOI:10.1142/s1793830920500147
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gaetz, Marisa;Flanagan, Bethany;Scheepers, Marion;Shanks, Meghan
- 通讯作者:Shanks, Meghan
Anomalous primes and the elliptic Korselt criterion
反常素数和椭圆 Korselt 准则
- DOI:10.1016/j.jnt.2019.02.013
- 发表时间:2019
- 期刊:
- 影响因子:0.7
- 作者:Babinkostova, L.;Bahr, J.C.;Kim, Y.H.;Neyman, E.;Taylor, G.K.
- 通讯作者:Taylor, G.K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liljana Babinkostova其他文献
Selective screenability in topological groups
- DOI:
10.1016/j.topol.2008.02.014 - 发表时间:
2008-11-01 - 期刊:
- 影响因子:
- 作者:
Liljana Babinkostova - 通讯作者:
Liljana Babinkostova
Weakly infinite dimensional subsets of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msup><mi mathvariant="double-struck">R</mi><mi mathvariant="double-struck">N</mi></msup></math>
- DOI:
10.1016/j.topol.2009.03.058 - 发表时间:
2010-06-01 - 期刊:
- 影响因子:
- 作者:
Liljana Babinkostova;Marion Scheepers - 通讯作者:
Marion Scheepers
Topological groups and covering dimension
- DOI:
10.1016/j.topol.2011.05.018 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:
- 作者:
Liljana Babinkostova - 通讯作者:
Liljana Babinkostova
Liljana Babinkostova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liljana Babinkostova', 18)}}的其他基金
REU site: Complexity Across Disciplines
REU 网站:跨学科的复杂性
- 批准号:
1659872 - 财政年份:2017
- 资助金额:
$ 28.8万 - 项目类别:
Continuing Grant
Boise Extravaganza in Set Theory, June 17-20, 2014
博伊西集合论盛宴,2014 年 6 月 17-20 日
- 批准号:
1440263 - 财政年份:2014
- 资助金额:
$ 28.8万 - 项目类别:
Continuing Grant
REU Site: Complexity in Algebra, Geometry and Applications
REU 网站:代数、几何和应用的复杂性
- 批准号:
1062857 - 财政年份:2011
- 资助金额:
$ 28.8万 - 项目类别:
Continuing Grant
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
中国恐龙骨骼化石时空分布综合研究
- 批准号:42372030
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
- 批准号:82371902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
High-throughput Single Cell Co-assay of Histone Modifications andTranscriptome
组蛋白修饰和转录组的高通量单细胞联合分析
- 批准号:
10698374 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Increasing the Complexity of Microtubule-based transport: Cargo adaptors and Hitchhiking on Vesicles.
增加基于微管的运输的复杂性:货物适配器和囊泡搭便车。
- 批准号:
10713449 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Data Science and Medical Image Analysis Training for Improved Health Care Delivery in Nigeria - DATICAN
数据科学和医学图像分析培训以改善尼日利亚的医疗保健服务 - DATICAN
- 批准号:
10719097 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Massachusetts Center for Alzheimer and dEmeNtia behaVIoral reSearch In minOrity agiNg (Mass-ENVISION)
马萨诸塞州阿尔茨海默病和痴呆症少数群体行为研究中心 (Mass-ENVISION)
- 批准号:
10729789 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别: