CAREER: Efficient Learning of Personalized Strategies
职业:高效学习个性化策略
基本信息
- 批准号:1350984
- 负责人:
- 金额:$ 67.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Online retailers frequently provide tailored product or movie recommendations. But the power of automated personalization, driven by data and statistics, could be far greater: imagine the impact on poverty reduction if all children had a personalized, self-improving tutoring system as part of their education. To realize this vision requires personalization systems that reason about both the immediate impact of a recommended item (e.g. will a learner immediately learn from a video lecture) as well as its longer term impact. For example, a recommended item or intervention may cause a user to change his/her preferences, state of knowledge, or reveal information about the user that was previously unknown. This requires methods for creating personalized strategies: adaptive rules about what decisions to make (whether or which ad to show, which pedagogical activity to provide) in which circumstances to maximize for long term outcomes. This research involves developing new data-driven, machine learning approaches to construct such personalized strategies for related individuals, and using them towards improving the effectiveness of online mathematics educational systems. The project frames personalized strategy creation as sequential decision making under uncertainty research. Though there have been many advances in sequential decision making under uncertainty, existing approaches have focused primarily on other application areas, like robotics, and fail to account or leverage for some of the special features that arise when interacting with people. These include that accurate simulation of people is difficult but prior data is often available, and that individuals are often related. This project contributes algorithms for mining existing datasets to create and precisely bound the expected performance of new high-quality strategies and for online policy learning across a series of similar sequential decision making tasks.
在线零售商经常提供量身定制的产品或电影推荐。但由数据和统计数据驱动的自动化个性化的力量可能要大得多:想象一下,如果所有儿童都拥有个性化的、自我改进的辅导系统作为教育的一部分,对减贫的影响会更大。为了实现这一愿景,需要个性化系统来推理推荐项目的直接影响(例如学习者是否会立即从视频讲座中学习)及其长期影响。例如,推荐的项目或干预可能会导致用户改变他/她的偏好、知识状态,或揭示先前未知的有关用户的信息。这需要创建个性化策略的方法:关于在何种情况下做出哪些决策(是否展示哪个广告、提供哪些教学活动)的自适应规则,以最大限度地实现长期成果。这项研究涉及开发新的数据驱动的机器学习方法,为相关个人构建此类个性化策略,并利用它们来提高在线数学教育系统的有效性。 该项目将个性化策略创建视为不确定性研究下的顺序决策。尽管在不确定性下的顺序决策方面取得了许多进展,但现有方法主要集中在其他应用领域,例如机器人技术,而未能考虑或利用与人交互时出现的一些特殊功能。其中包括准确模拟人很困难,但先前的数据通常是可用的,并且个体通常是相关的。该项目提供了挖掘现有数据集的算法,以创建并精确限制新的高质量策略的预期性能,以及跨一系列类似的顺序决策任务的在线政策学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma Brunskill其他文献
Emma Brunskill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emma Brunskill', 18)}}的其他基金
RI: Small: Using and Gathering Data for Efficient Batch Reinforcement Learning
RI:小型:使用和收集数据以实现高效的批量强化学习
- 批准号:
2112926 - 财政年份:2021
- 资助金额:
$ 67.22万 - 项目类别:
Standard Grant
IIS-RI: International Conference on Automated Planning and Scheduling (ICAPS) 2017 Doctoral Consortium Travel Awards
IIS-RI:国际自动化规划与调度会议 (ICAPS) 2017 博士联盟旅行奖
- 批准号:
1745800 - 财政年份:2017
- 资助金额:
$ 67.22万 - 项目类别:
Standard Grant
CAREER: Efficient Learning of Personalized Strategies
职业:高效学习个性化策略
- 批准号:
1753968 - 财政年份:2017
- 资助金额:
$ 67.22万 - 项目类别:
Standard Grant
相似国自然基金
基于差分隐私的高效隐私保护机器学习研究
- 批准号:62302441
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于隐含知识挖掘与高效表示学习的初等数学自动解答研究
- 批准号:62377021
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
用户友好型高效自适应的机器学习优化算法研究
- 批准号:62376125
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于区块链的去中心化高效纵向联邦学习关键技术研究
- 批准号:62372044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 67.22万 - 项目类别:
Continuing Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 67.22万 - 项目类别:
Continuing Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 67.22万 - 项目类别:
Continuing Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 67.22万 - 项目类别:
Continuing Grant
CAREER: Efficient Learning of Equilibria in Dynamic Bayesian Games with Nash, Bellman and Lyapunov
职业生涯:与纳什、贝尔曼和李亚普诺夫一起有效学习动态贝叶斯博弈中的均衡
- 批准号:
2238838 - 财政年份:2023
- 资助金额:
$ 67.22万 - 项目类别:
Continuing Grant