Numerical Assessment of the Practical and Intrinsic Predictability of Warm-Season Convection Initiation Using Mesoscale Predictability Experiment (MPEX) Data
使用中尺度可预测性实验(MPEX)数据对暖季对流引发的实际和内在可预测性进行数值评估
基本信息
- 批准号:1347545
- 负责人:
- 金额:$ 45.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The formation of deep, moist convection, or convection initiation, is highly sensitive to the atmospheric state in which it occurs. Consequently, accurately predicting the timing and location of convection initiation events poses a formidable challenge for storm-scale numerical simulations. The ultimate goal of this research is to improve the ability to predict convection initiation and, subsequently, mitigate the loss of property and life that often accompany intense convective events. To that end, this study examines the practical and intrinsic predictability of convection initiation by assessing the impact of targeted synoptic- to meso-alpha-scale observations obtained in the pre-convective environment by the Mesoscale Predictability Experiment (MPEX) upon convection-permitting real-data numerical simulations of selected convection initiation events. Investigating how predictability evolves in response to a more intensively-sampled representation of the pre-convective environment will increase fundamental understanding regarding the synoptic- to meso-alpha-scale controls upon convection initiation.Intellectual Merit: Utilizing two ensembles of Ensemble Kalman filter-initialized, convection-permitting real-data numerical simulations, one incorporating MPEX observations and one not, this research tests the hypothesis that a more intensively-sampled representation of the pre-convective atmospheric state is sufficient to improve the practical predictability of pristine convection initiation timing and location over the range of events sampled by MPEX. Probabilistic, temporally-binned spatial verification methods will be utilized to test this hypothesis. Utilizing "perfect model" and "perfect observations" approaches applied to the study of the initial convection initiation event from three MPEX intensive observation periods, each characterized by a different prevailing synoptic-scale flow pattern, the influences of initial condition uncertainty and variability in the numerical representation of sub-grid-scale planetary boundary layer processes upon the intrinsic predictability of convection initiation are examined. In so doing, this research will expand understanding through the provision of critically-needed insight into the limits imposed by current observational constraints upon the predictability of convection initiation, an inherently multi-scale, non-linear physical process. It will further illuminate the controls upon the predictability of convection initiation exerted by the synoptic- and meso-alpha-scales and identify the presence of larger-scale attractors that influence its intrinsic predictability.Broader Impacts: Deep, moist convection routinely poses significant impacts to both property and life. The ability to mitigate these impacts through the development of more accurate, longer-lead forecasts of deep, moist convection hinges upon our ability to better predict its initiation. Basic insight into convection initiation provided by the research will lead to advances in our ability to predict the timing, location, and occurrence of deep, moist convection. Such advances offer the promise of reducing the substantial losses of property and life due to deep, moist convection and associated phenomena incurred annually. The cross-cutting research themes of predictability, probability, and uncertainty will be communicated to non-specialists through the development of an undergraduate, non-majors Honors seminar titled "Understanding and Communicating Probability and Uncertainty in the Atmospheric Sciences." Graduate students involved with the research will be mentored as to the inherent societal significance of their research, afforded opportunities to communicate research findings to diverse, non-specialist audiences, and encouraged to acquire training in integrating the physical and social sciences.
深层潮湿对流的形成或对流的启动对其发生时的大气状态高度敏感。因此,准确预测对流起始事件的时间和位置对风暴规模的数值模拟提出了巨大的挑战。这项研究的最终目标是提高预测对流起始的能力,从而减轻强烈对流事件经常带来的财产和生命损失。为此,本研究通过评估中尺度可预测性实验(MPEX)在对流前环境中获得的目标天气到中观 α 尺度观测结果对允许对流的实际情况的影响,检验了对流起始的实际和内在可预测性。 -所选对流引发事件的数据数值模拟。研究可预测性如何响应对流前环境的更密集采样表示而演变,将增加对对流启动时天气到中观阿尔法尺度控制的基本理解。智力优点:利用两个集成卡尔曼滤波器初始化的集成,允许对流的真实数据数值模拟,一个包含 MPEX 观测结果,一个不包含 MPEX 观测结果,这项研究测试了以下假设:更密集的采样表示对流前大气状态足以提高 MPEX 采样事件范围内原始对流起始时间和位置的实际可预测性。将利用概率、时间分档的空间验证方法来检验这一假设。利用“完美模型”和“完美观测”方法来研究三个 MPEX 密集观测周期的初始对流起始事件,每个周期的特点是不同的主要天气尺度流动模式、初始条件不确定性和变化的影响研究了基于对流引发的内在可预测性的亚网格尺度行星边界层过程的数值表示。在此过程中,这项研究将通过提供迫切需要的洞察力来扩大理解,了解当前观测限制对对流引发(本质上是多尺度的非线性物理过程)的可预测性所施加的限制。它将进一步阐明对天气和中观阿尔法尺度对对流启动的可预测性的控制,并确定影响其内在可预测性的较大尺度吸引子的存在。 更广泛的影响:深层、潮湿的对流通常会对无论是财产还是生命。通过开发更准确、更长期的深层潮湿对流预报来减轻这些影响的能力取决于我们更好地预测其发生的能力。该研究提供的对对流起始的基本见解将提高我们预测深层潮湿对流的时间、位置和发生的能力。这些进步有望减少每年由于深层潮湿对流和相关现象而造成的重大财产和生命损失。可预测性、概率和不确定性的跨领域研究主题将通过举办题为“理解和交流大气科学中的概率和不确定性”的本科非专业荣誉研讨会来向非专业人士进行交流。参与研究的研究生将接受指导,了解其研究的内在社会意义,提供向不同的非专业受众传达研究成果的机会,并鼓励他们接受物理科学和社会科学相结合的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen Evans其他文献
Collaborative Work Environments in Shell - Global Scale, Learning and Evolution
壳牌的协作工作环境 - 全球规模、学习和发展
- DOI:
10.2118/167455-ms - 发表时间:
2013-10-28 - 期刊:
- 影响因子:0
- 作者:
F. G. V. D. Berg;G. A. McCallum;Matt Graves;Elizabeth Heath;Allen Evans - 通讯作者:
Allen Evans
Allen Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen Evans', 18)}}的其他基金
AGS-FIRP Track 1: Learning by Doing: Observing the Lake Michigan Lake-Breeze Circulation
AGS-FIRP 轨道 1:边做边学:观察密歇根湖微风环流
- 批准号:
2347093 - 财政年份:2024
- 资助金额:
$ 45.62万 - 项目类别:
Standard Grant
Thermodynamics of Tropical Cyclone Overland Maintenance and Intensification
热带气旋陆上维持和强化的热力学
- 批准号:
1911671 - 财政年份:2019
- 资助金额:
$ 45.62万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Big Weather Web: A Common and Sustainable Big Data Infrastructure in Support of Weather Prediction Research and Education in Universities
合作研究:SI2-SSI:大天气网:支持大学天气预报研究和教育的通用且可持续的大数据基础设施
- 批准号:
1450439 - 财政年份:2015
- 资助金额:
$ 45.62万 - 项目类别:
Standard Grant
相似国自然基金
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深海大尺度异种钛合金环肋柱壳的失效破坏机理及安全性评估方法研究
- 批准号:52371282
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于半实物孪生特征空间Ricci流方法的柔性轴联系统健康评估研究
- 批准号:52375109
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
融合检监测数据与有限元自动建模的桥梁结构分析评估理论
- 批准号:52378289
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向舰艇维修性试验评估的虚实深度融合机制与方法
- 批准号:52371340
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Targeting the neurobiology of restricted and repetitive behaviors in children with autism using N-acetylcysteine
使用 N-乙酰半胱氨酸针对自闭症儿童限制性和重复性行为的神经生物学
- 批准号:
10758985 - 财政年份:2023
- 资助金额:
$ 45.62万 - 项目类别:
CareNet, An Interactive Digital Tool to Assess Informal Caregiving Networks of Older Adults with Dementia
CareNet,一种交互式数字工具,用于评估患有痴呆症的老年人的非正式护理网络
- 批准号:
10893774 - 财政年份:2023
- 资助金额:
$ 45.62万 - 项目类别:
Preliminary Implementation of an Informational Nudge to Improve Heart Failure Prescribing
初步实施信息推动以改善心力衰竭处方
- 批准号:
10642641 - 财政年份:2023
- 资助金额:
$ 45.62万 - 项目类别:
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 45.62万 - 项目类别:
Expanding Exercise Programming for Veterans Through Telehealth
通过远程医疗扩大退伍军人的锻炼计划
- 批准号:
10537533 - 财政年份:2023
- 资助金额:
$ 45.62万 - 项目类别: