BRIGE: Simultaneous Modeling and Calibration for Environmental Sensor Data

BRIGE:环境传感器数据的同步建模和校准

基本信息

项目摘要

ECCS-1342121Balzano, LauraUniversity of MichiganBRIGE: Simultaneous Modeling and Calibration for Environmental Sensor DataABSTRACTIntellectual Merit: This BRIGE project is aimed at the investigation of signal processing theory and methods for blindly calibrating sensors on a massive scale, after they are deployed, and as their calibrations change over time. The massive deployment of sensors is exciting for the prospect of what may be learned from the data; a critical challenge in using those data is knowing their quality and reliability. In deployments of even a hundred sensors, it becomes infeasible to hand-calibrate each one in order to maintain confidence in the sensor output. Thus blind calibration, i.e. calibration without the need for controlled stimulus or high fidelity ground-truth data, is of critical importance. This proposal focuses both on theory of blind calibration and the concrete practical application to air quality sensing. Realistic sensing environments are considered, where phenomena are non-stationary, and data are streaming, with corruptions and missing values. A calibration dataset will be collected and shared with the community. The two major theoretical contributions will be (1) extending theory of blind calibration to models which capture the great variety exhibited by environmental phenomena, and (2) online modeling for the practical scenario where the phenomenon of interest is non-stationary. Broader Impacts: Environmental sensing is an important contemporary application of statistical signal processing that attracts a great deal of interest from people with diverse backgrounds. This application gets people involved in the technology, the climate, and their local community; therefore it has potential to truly broaden participation in engineering. The syllabus for Digital Signal Processing at the University of Michigan, a central course in all signal processing curricula, will be expanded to include this application and useful fundamentals like spatial models, auto-regressive models, and matrix decomposition. Additionally, signal processing for environmental sensing in particular has the potential to attract students who may typically go into science or environmental policy, but who have a strong interest in mathematics as well. Interaction with the Marian Sarah Parker Scholars program at Michigan will expose outstanding young female scientists to the wide variety of possibilities with signal processing. Beyond the classroom, exploring one's environment using sensing has the potential to make a very positive social impact. The projects developed for the Parker scholars and other Michigan educational programs will build an infrastructure for future interactions with all grade levels and the greater public.
ECCS-1342121Balzano,Laura 密歇根大学BRIGE:环境传感器数据的同步建模和校准摘要智力价值:该 BRIGE 项目旨在研究大规模盲目校准传感器的信号处理理论和方法,在传感器部署后,并作为其校准随着时间的推移而改变。传感器的大规模部署对于从数据中获取信息的前景来说是令人兴奋的;使用这些数据的一个关键挑战是了解它们的质量和可靠性。即使部署一百个传感器,也无法手动校准每个传感器以保持对传感器输出的信心。因此,盲校准,即不需要受控刺激或高保真地面实况数据的校准至关重要。该提案重点关注盲标定理论和空气质量传感的具体实际应用。考虑现实的传感环境,其中现象是非平稳的,数据是流动的,存在损坏和缺失值。将收集校准数据集并与社区共享。两个主要的理论贡献将是(1)将盲校准理论扩展到捕获环境现象所表现出的多样性的模型,以及(2)针对感兴趣的现象非平稳的实际场景进行在线建模。更广泛的影响:环境传感是统计信号处理的重要当代应用,吸引了不同背景的人们的极大兴趣。该应用程序让人们参与技术、气候和当地社区;因此,它有潜力真正扩​​大工程领域的参与。密歇根大学的数字信号处理教学大纲是所有信号处理课程的核心课程,将进行扩展以包括该应用程序和有用的基础知识,例如空间模型、自回归模型和矩阵分解。此外,环境传感的信号处理尤其有可能吸引那些通常从事科学或环境政策但对数学也有浓厚兴趣的学生。与密歇根州玛丽安·莎拉·帕克学者计划的互动将使杰出的年轻女科学家接触到信号处理的各种可能性。在课堂之外,利用传感探索环境有可能产生非常积极的社会影响。为帕克学者和其他密歇根教育项目开发的项目将为未来与所有年级和广大公众的互动建立基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Balzano其他文献

Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
具有归一化特征的神经崩溃:黎曼流形的几何分析
Iterative Grassmannian Optimization for Robust Image Alignment
用于鲁棒图像对齐的迭代格拉斯曼优化
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Jun He;Dejiao Zhang;Laura Balzano;Tao Tao
  • 通讯作者:
    Tao Tao
Optimality of POD for Data-Driven LQR With Low-Rank Structures
具有低阶结构的数据驱动 LQR 的 POD 最优性
  • DOI:
    10.1109/lcsys.2023.3344147
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Rachel Newton;Zhe Du;Peter Seiler;Laura Balzano
  • 通讯作者:
    Laura Balzano
Efficient Low-Dimensional Compression of Overparameterized Models
过度参数化模型的高效低维压缩
  • DOI:
    10.48550/arxiv.2311.01479
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soo Min Kwon;Zekai Zhang;Dogyoon Song;Laura Balzano;Qing Qu
  • 通讯作者:
    Qing Qu
Compressible Dynamics in Deep Overparameterized Low-Rank Learning&Adaptation
深度超参数化低阶学习中的可压缩动力学
  • DOI:
    10.48550/arxiv.2406.04112
  • 发表时间:
    2024-06-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Can Yaras;Peng Wang;Laura Balzano;Qing Qu
  • 通讯作者:
    Qing Qu

Laura Balzano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Balzano', 18)}}的其他基金

CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: CAREER: Robust, Interpretable, and Efficient Unsupervised Learning with K-set Clustering
CIF:职业:使用 K 集聚类进行稳健、可解释且高效的无监督学习
  • 批准号:
    1845076
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
  • 批准号:
    32300829
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
转录因子BaVRN1同时调控芥蓝芥子油苷生物合成与抽薹开花的分子机理
  • 批准号:
    32372683
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于单颗粒-ICP-MS同时筛查检测多种循环肿瘤细胞的新方法研究
  • 批准号:
    22304025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多模态数据自监督学习的同时性多原发肺癌病理风险分级预测模型研究
  • 批准号:
    62306189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钛基植入材料协同时序性磁热效应免疫介导糖尿病骨缺损修复研究
  • 批准号:
    32301109
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Simultaneous structure and control design of network-type mechanical structures using exponential coordinates
利用指数坐标的网络型机械结构同步结构与控制设计
  • 批准号:
    23K03728
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simultaneous pharmacological profiling of oncogenic gene fusion proteins in cancer
癌症中致癌基因融合蛋白的同时药理学分析
  • 批准号:
    10845876
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
High throughput platform for simultaneous multiparametric assessment of cardiac physiology for heart failure drug development
用于心力衰竭药物开发的心脏生理学同步多参数评估的高通量平台
  • 批准号:
    10745000
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Simultaneous analysis of cell-borne and soluble biomarkers by high throughput acoustic flow cytometry
通过高通量声学流式细胞术同时分析细胞源性和可溶性生物标志物
  • 批准号:
    10602869
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Two-Color Near-Infrared Fluorescence Guided Surgery Tools Enabling Simultaneous Cancer Margin and Nerve Visualization during Head and Neck Squamous Cell Carcinoma Resection
双色近红外荧光引导手术工具可在头颈鳞状细胞癌切除过程中同时实现癌症边缘和神经可视化
  • 批准号:
    10603689
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了