XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains

XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统

基本信息

  • 批准号:
    1337300
  • 负责人:
  • 金额:
    $ 27.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The explosion of "big data" applications imposes severe challenges of data processing speed and scalability on traditional computer systems. The performance of traditional Von Neumann machines is greatly hindered by the increasing performance gap between CPU and memory, motivating the active research on new or alternative computing architectures. By imitating brain's naturally massive parallel architecture with closely coupled memory and computing as well as the unique analog domain operations, neuromorphic computing systems are anticipated to deliver superior speed for applications in image recognition and natural language understanding.The objective of this research is to establish the fundamental framework and design methodology for NeoNexus -- the next-generation information processing system inspired by human neocortex. It integrates neuromorphic computing accelerators with conventional computing resources by leveraging large scale inference-based data processing and computing acceleration technique atop memristor crossbar arrays. The computation and data exchange will be carefully coordinated and supported by the innovative interconnect architecture, i.e., a hierarchical network-on-chip (NoC). The software-hardware co-design platform will be developed to address the various design challenges. The project will help computer architecture and high-performance computing communities to overcome the ever-increasing technical challenges of traditional architectures and accelerate the fusion between conventional computing technology and cognitive computing model. It will also promote the applications of artificial intelligence technology advances in modern computer architectures and motivate the inventions at both software and hardware levels. Undergraduate and graduate students involved in this research will be trained for the next-generation semiconductor industry workforce.
“大数据”应用的爆炸式增长对传统计算机系统的数据处理速度和可扩展性提出了严峻的挑战。 CPU 和内存之间不断扩大的性能差距极大地阻碍了传统冯·诺依曼机器的性能,这促使人们积极研究新的或替代的计算架构。通过模仿大脑自然的大规模并行架构以及紧密耦合的内存和计算以及独特的模拟域操作,神经形态计算系统有望为图像识别和自然语言理解应用提供卓越的速度。这项研究的目的是建立NeoNexus 的基本框架和设计方法——受人类新皮质启发的下一代信息处理系统。它通过利用忆阻器交叉阵列上的大规模基于推理的数据处理和计算加速技术,将神经形态计算加速器与传统计算资源集成。计算和数据交换将由创新的互连架构(即分层片上网络(NoC))仔细协调和支持。将开发软硬件协同设计平台来解决各种设计挑战。该项目将帮助计算机架构和高性能计算社区克服传统架构不断增加的技术挑战,加速传统计算技术与认知计算模型的融合。它还将促进人工智能技术进步在现代计算机架构中的应用,并激发软件和硬件层面的发明。参与这项研究的本科生和研究生将接受下一代半导体行业劳动力的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qinru Qiu其他文献

An Integrated Simulation Platform for the Analysis of UAS BVLOS Operations Supported by 4G/5G Communications
4G/5G通信支持的无人机超视距运行分析综合仿真平台
Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting
具有能量收集功能的实时系统的能量感知动态电压和频率选择
Adaptive Scheduling and Voltage Scaling for Multiprocessor Real-time Applications with Non-deterministic Workload
具有非确定性工作负载的多处理器实时应用的自适应调度和电压调节
Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling
用于竞争感知任务迁移和频率缩放的芯片多处理器性能建模
  • DOI:
    10.1166/jolpe.2015.1398
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Shen;Qinru Qiu
  • 通讯作者:
    Qinru Qiu
Towards Budget-Driven Hardware Optimization for Deep Convolutional Neural Networks Using Stochastic Computing
使用随机计算实现深度卷积神经网络的预算驱动硬件优化

Qinru Qiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qinru Qiu', 18)}}的其他基金

Phase I IUCRC Syracuse University: Center for Alternative Sustainable and Intelligent Computing (ASIC)
第一阶段 IUCRC 雪城大学:替代可持续和智能计算中心 (ASIC)
  • 批准号:
    1822165
  • 财政年份:
    2018
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Continuing Grant
Syracuse University Planning Grant: I/UCRC for Alternative Sustainable and Intelligent Computing
雪城大学规划补助金:I/UCRC 用于替代可持续和智能计算
  • 批准号:
    1650469
  • 财政年份:
    2017
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
CPS: Medium: Enabling Multimodal Sensing, Real-time Onboard Detection and Adaptive Control for Fully Autonomous Unmanned Aerial Systems
CPS:中:为完全自主的无人机系统实现多模态传感、实时机载检测和自适应控制
  • 批准号:
    1739748
  • 财政年份:
    2017
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Power Management for Multiprocessor System-on-Chip
职业:多处理器片上系统的自适应电源管理
  • 批准号:
    1203986
  • 财政年份:
    2011
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Continuing Grant
CAREER: Adaptive Power Management for Multiprocessor System-on-Chip
职业:多处理器片上系统的自适应电源管理
  • 批准号:
    0845947
  • 财政年份:
    2009
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Continuing Grant

相似国自然基金

钝感高能炸药存在曲率效应的多维爆轰波传播数值模拟研究
  • 批准号:
    11202033
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
钝感炸药爆轰冲击波动力学(DSD)高阶模型的研究
  • 批准号:
    11002129
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
食品包装纸中DSD-FWAs的检测技术、迁移体系与迁移数学模型研究
  • 批准号:
    81072306
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1744077
  • 财政年份:
    2017
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1744077
  • 财政年份:
    2017
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
  • 批准号:
    1720635
  • 财政年份:
    2016
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:完整:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
  • 批准号:
    1533771
  • 财政年份:
    2015
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
  • 批准号:
    1533797
  • 财政年份:
    2015
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了