INSPIRE Track 2: Computational Modeling of Grievances and Political Instability through Global Media
INSPIRE 轨道 2:通过全球媒体对不满和政治不稳定进行计算建模
基本信息
- 批准号:1343123
- 负责人:
- 金额:$ 259.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This INSPIRE award brings together research areas typically supported by the Political Science Program of the Social and Economic Sciences Division of the Social, Behavioral, and Economic Sciences (SBE) Directorate; the Division of Information and Intelligent Systems and Office of Cyberinfrastructure of the Computer and Information Science and Engineering (CISE) Directorate; and the Division of Mathematical Sciences of the Mathematical and Physical Sciences (MPS) Directorate. Although the relationship between grievances and political instability has concerned and fascinated policymakers and scientists for more than a century, prior research has been limited to comparative analysis of countries and a limited number of social surveys conducted within select countries. These traditional methods are expensive, labor intensive, and slow. A stark example of the weakness of traditional approaches are the events of the so-called "Arab Spring" which resulted in the outbreak of mass protests across North Africa and the Middle East; led to the overthrow of regimes in Egypt, Tunisia, and Libya; fomented a brutal and prolonged civil war in Syria; and triggered severe crack-downs in Bahrain. The Arab Spring caught both policymakers and academics by surprise, even though these events appear to have developed in large part out of grievances that built over decades of autocratic rule, widespread corruption and economic stagnation. The main purpose of this research is to exploit the recent availability of worldwide, individual-level data from social media outlets such as Twitter and from the massive availability of worldwide news outlets to assess the possibility of measuring perceptions of grievances at the micro-level in real time for purposes of forecasting instability. It brings together researchers in computer science, mathematics, and the social sciences to generate theoretical and empirical advances. Hundreds of millions of people around the world are now using social media to communicate, making this technology-enabled forum a major de facto platform for political participation, expression, advocacy, and mobilization. In addition, the widespread availability of online news reports now offers the ability to collect content from newspapers and other print media worldwide and code for perceived grievances. By triangulating measures across social media, the news online, and traditional databases, the project evaluates their relative strength in terms of ascertaining and measuring grievances to forecast political instability. The overarching purpose of this research is to assist policymakers in developing improved methods for identifying and anticipating hot zones of instability and conflict. This has important implications for research but also for national policy, in terms of strategic thinking about defense, diplomacy, and humanitarian assistance, as well as in developing potential interventions and assessing their effectiveness once implemented.
该 INSPIRE 奖项汇集了通常由社会、行为和经济科学 (SBE) 理事会社会和经济科学部政治学项目支持的研究领域;计算机与信息科学与工程局信息与智能系统处、网络基础设施办公室;以及数学和物理科学 (MPS) 理事会的数学科学部。尽管一个多世纪以来,不满情绪与政治不稳定之间的关系一直令政策制定者和科学家关注并着迷,但先前的研究仅限于对国家的比较分析以及在选定国家内进行的有限数量的社会调查。这些传统方法成本昂贵、劳动强度大且速度慢。传统方法弱点的一个明显例子是所谓的“阿拉伯之春”事件,该事件导致北非和中东爆发大规模抗议活动;导致埃及、突尼斯和利比亚政权被推翻;在叙利亚煽动残酷而长期的内战;并引发了巴林的严厉镇压。阿拉伯之春让政策制定者和学者都感到惊讶,尽管这些事件似乎在很大程度上是由于几十年来的独裁统治、普遍的腐败和经济停滞而产生的不满情绪而发展起来的。这项研究的主要目的是利用 Twitter 等社交媒体和全球新闻媒体的大量可用数据来评估在微观层面衡量不满情绪的可能性。实时用于预测不稳定性。它汇集了计算机科学、数学和社会科学领域的研究人员,以取得理论和实证方面的进展。现在,世界各地有数亿人使用社交媒体进行交流,使这个技术支持的论坛成为事实上的政治参与、表达、宣传和动员的主要平台。此外,在线新闻报道的广泛使用现在提供了从世界各地的报纸和其他印刷媒体收集内容并编码感知不满的能力。通过对社交媒体、在线新闻和传统数据库的衡量指标进行三角测量,该项目评估了它们在查明和衡量不满情绪方面的相对优势,以预测政治不稳定。这项研究的首要目的是协助决策者开发改进的方法来识别和预测不稳定和冲突的热点地区。这不仅对研究具有重要意义,而且对国家政策、国防、外交和人道主义援助的战略思考以及制定潜在干预措施和评估其实施后的有效性也具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary LaFree其他文献
Gary LaFree的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary LaFree', 18)}}的其他基金
CIF21: DIBBs: Building a Unified Infrastructure for Data Integration on Political Violence and Conflict
CIF21:DIBB:构建政治暴力和冲突数据集成的统一基础设施
- 批准号:
1255793 - 财政年份:2013
- 资助金额:
$ 259.45万 - 项目类别:
Standard Grant
SGER: DHS and NSF Collaboration: Creating an Archive of Preparedness and Homeland Security Survey Data
SGER:国土安全部和国家科学基金会合作:创建备灾和国土安全调查数据档案
- 批准号:
0651287 - 财政年份:2006
- 资助金额:
$ 259.45万 - 项目类别:
Standard Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
- 批准号:62301296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
- 批准号:72374125
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Endowment for Cardiometabolic Health Disparities Research
心脏代谢健康差异研究基金会
- 批准号:
10765552 - 财政年份:2023
- 资助金额:
$ 259.45万 - 项目类别:
RII Track-4: NSF: Data-driven Computational and Machine Learning Assessment of Structure-Toxicity Relationship of Micro/NanoPlastics
RII Track-4:NSF:微/纳米塑料结构-毒性关系的数据驱动计算和机器学习评估
- 批准号:
2229755 - 财政年份:2023
- 资助金额:
$ 259.45万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of a university-wide computational cluster
MRI:轨道 1 获取大学范围内的计算集群
- 批准号:
2320493 - 财政年份:2023
- 资助金额:
$ 259.45万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a MALDI-TOF/FTIR System to Support Course-Based Undergraduate Research Experiences in Biological and Computational Sciences at an HSI
设备: MRI:轨道 1 采购 MALDI-TOF/FTIR 系统,以支持 HSI 生物和计算科学方面基于课程的本科生研究经验
- 批准号:
2320765 - 财政年份:2023
- 资助金额:
$ 259.45万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
- 批准号:
2324737 - 财政年份:2023
- 资助金额:
$ 259.45万 - 项目类别:
Standard Grant