Hazards SEES Type 2: WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires

Hazards SEES 类型 2:WIFIRE:可扩展的数据驱动型野火监控、动态预测和弹性网络基础设施

基本信息

  • 批准号:
    1331615
  • 负责人:
  • 金额:
    $ 265.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

The University of California at San Diego (UCSD) is awarded a grant to build an end-to-end cyberinfrastructure (CI), called WIFIRE, for real-time and data-driven simulation, prediction and visualization of wildfire behavior. San Diego Supercomputer Center (SDSC) and Calit2's Qualcomm Institute will build this integrated CI system for supporting social-ecological resilience to the changing fire ecology regime in the face of urban dynamics and climate change, together with collaborators from UCSD's Jacobs School of Engineering and UMD's Department of Fire Protection Engineering. The WIFIRE CI integrates networked observations, e.g., heterogeneous satellite data and real-time remote sensor data, with computational techniques in signal processing, visualization, modeling and data assimilation to provide a scalable, technological, and educational solution to monitor weather patterns to predict a wildfire's Rate of Spread. Our collaborative WIFIRE team of scientists, engineers, technologists, government policy managers, private industry, and firefighters will architect and implement CI pathways that enable joint innovation for wildfire management. Scientific workflows will be used as an integrative distributed programming model and will simplify the implementation of engineering modules for data-driven simulation, prediction and visualization while allowing integration with large-scale computing facilities. WIFIRE will be scalable to users with different skill-levels via specialized web interfaces and user-specified alerts for environmental events broadcasted to receivers before, during and after a wildfire. The approach is scalable which allows many sensors to be subjected to user-specified data processing algorithms to generate threshold alerts within seconds. Integration of this sensor data into both rapidly available fire image data and models will better enable situational awareness, responses and decision support at local, state, national, and international levels.The products of WIFIRE will be initially disseminated to project collaborators (SDG&E, CAL FIRE, USFS), covering academic, private, and government laboratories while generating value to emergency officials, and consequently to the general public. WIFIRE may be used by government agencies in the future to save lives and property during wildfire events, test the effectiveness of response and evacuation scenarios before they occur and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE's high-density network, therefore, will serve as a testbed for future applications worldwide. The team is inclusive across a spectrum of collaborators and will create an open-source CI environment with intuitive workflows that lead to reusable software components for a wide range of science and engineering disciplines that can be extended to secondary education. Results are disseminated via an interactive website at SDSC in which students from high school to graduate level can participate in uploading their own data logging, data processing or data-driven alerts.
加州大学圣地亚哥分校 (UCSD) 获得拨款,用于建设名为 WIFIRE 的端到端网络基础设施 (CI),用于实时和数据驱动的野火行为模拟、预测和可视化。圣地亚哥超级计算机中心 (SDSC) 和 Calit2 的高通研究所将与 UCSD 雅各布斯工程学院和 UMD 的合作者一起构建这一集成 CI 系统,以支持面对城市动态和气候变化时不断变化的火灾生态状况的社会生态恢复力消防工程系。 WIFIRE CI 将网络观测(例如异构卫星数据和实时遥感器数据)与信号处理、可视化、建模和数据同化中的计算技术集成在一起,提供可扩展的技术和教育解决方案来监测天气模式以预测天气变化。野火的蔓延速度。我们的 WIFIRE 协作团队由科学家、工程师、技术专家、政府政策经理、私营企业和消防员组成,他们将设计和实施 CI 路径,实现野火管理的联合创新。科学工作流程将用作集成的分布式编程模型,并将简化数据驱动模拟、预测和可视化的工程模块的实施,同时允许与大规模计算设施集成。 WIFIRE 将通过专门的网络界面和用户指定的环境事件警报,在野火发生之前、期间和之后向接收器广播,以适应不同技能水平的用户。该方法具有可扩展性,允许许多传感器接受用户指定的数据处理算法,以在几秒钟内生成阈值警报。将此传感器数据集成到快速可用的火灾图像数据和模型中,将更好地在地方、州、国家和国际层面实现态势感知、响应和决策支持。WIFIRE 的产品将首先分发给项目合作者(SDG&E、CAL FIRE、USFS),涵盖学术、私人和政府实验室,同时为应急官员乃至公众创造价值。政府机构未来可能会使用 WIFIRE 在野火事件期间拯救生命和财产,在发生之前测试响应和疏散场景的有效性,并评估高密度传感器网络在改善火灾和天气预报方面的有效性。因此,WIFIRE 的高密度网络将作为未来全球应用的测试平台。该团队包容性广泛的合作者,将创建一个具有直观工作流程的开源 CI 环境,为广泛的科学和工程学科提供可重用的软件组件,并可扩展到中等教育。结果通过 SDSC 的交互式网站传播,从高中到研究生水平的学生都可以参与上传自己的数据记录、数据处理或数据驱动的警报。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilkay Altintas其他文献

Bridging eResearch Infrastructure and Experimental Materials Science Process in the Quantum Data Hub
在量子数据中心桥接电子研究基础设施和实验材料科学过程
  • DOI:
    10.48550/arxiv.2405.19706
  • 发表时间:
    2024-05-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amarnath Gupta;Shweta Purawat;Subhasis Dasgupta;Pratyush Karmakar;Elaine Chi;Ilkay Altintas
  • 通讯作者:
    Ilkay Altintas
Utilizing Wearable Device Data for Syndromic Surveillance: A Fever Detection Approach
利用可穿戴设备数据进行症状监测:发烧检测方法
  • DOI:
    10.3390/s24061818
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Kasl;Lauryn Keeler Bruce;W. Hartogensis;Subhasis Dasgupta;Leena S. Pandya;Stephan Dilchert;Frederick M. Hecht;Amarnath Gupta;Ilkay Altintas;Ashley E. Mason;Benjamin L. Smarr
  • 通讯作者:
    Benjamin L. Smarr

Ilkay Altintas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilkay Altintas', 18)}}的其他基金

Planning: FIRE-PLAN: Community Building Toward an Immersive Forest Network to Catalyze Wildland Fire Solutions and Training
规划:FIRE-PLAN:建立沉浸式森林网络的社区,以促进荒地火灾解决方案和培训
  • 批准号:
    2341120
  • 财政年份:
    2023
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
Student and Early Career Support: 23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2023)
学生和早期职业支持:第 23 届 IEEE/ACM 国际集群、云和互联网计算研讨会 (CCGrid 2023)
  • 批准号:
    2317547
  • 财政年份:
    2023
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
National Data Platform Pilot: Services for Equitable Open Access to Data
国家数据平台试点:公平开放数据访问服务
  • 批准号:
    2333609
  • 财政年份:
    2023
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: FOUNT: Scaffolded, Hands-On Learning for a Data-Centric Future
协作研究:网络培训:实施:媒介:FOUNT:支架式实践学习,打造以数据为中心的未来
  • 批准号:
    2230081
  • 财政年份:
    2022
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: FOUNT: Scaffolded, Hands-On Learning for a Data-Centric Future
协作研究:网络培训:实施:媒介:FOUNT:支架式实践学习,打造以数据为中心的未来
  • 批准号:
    2230081
  • 财政年份:
    2022
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator – Track D: Artificial Intelligence and Community Driven Wildland Fire Innovation via a WIFIRE Commons Infrastructure for Data and Model Sharing
NSF 融合加速器 — 轨道 D:通过 WIFIRE 共享基础设施实现数据和模型共享,人工智能和社区驱动的野地火灾创新
  • 批准号:
    2134904
  • 财政年份:
    2021
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track D: Artificial Intelligence and Community Driven Wildland Fire Innovation via a WIFIRE Commons Infrastructure for Data and Model Sharing
NSF 融合加速器轨道 D:通过 WIFIRE 共享基础设施实现数据和模型共享,人工智能和社区驱动的野地火灾创新
  • 批准号:
    2040676
  • 财政年份:
    2020
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: NSCI : Computational and Data Innovation Implementing a National Community Hydrologic Modeling Framework for Scientific Discovery
合作研究:框架:软件:NSCI:计算和数据创新实施国家社区水文建模框架以促进科学发现
  • 批准号:
    1835855
  • 财政年份:
    2018
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
EAGER: Interoperability Testbed - Assessing a Layered Architecture for Integration of Existing Capabilities
EAGER:互操作性测试台 - 评估用于集成现有功能的分层架构
  • 批准号:
    1239623
  • 财政年份:
    2012
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
  • 批准号:
    1062565
  • 财政年份:
    2011
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Continuing Grant

相似海外基金

Hazards SEES Type 2: Modeling to Promote Regional Resilience to Repeated Heat Waves and Hurricanes
灾害 SEES 类型 2:建立模型以提高区域对反复出现的热浪和飓风的抵御能力
  • 批准号:
    1631409
  • 财政年份:
    2015
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Continuing Grant
Hazards SEES Type 2: Hazard Prediction and Communication Dynamics in the Modern Information Environment
危害 SEES 类型 2:现代信息环境中的危害预测和沟通动态
  • 批准号:
    1331490
  • 财政年份:
    2013
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Continuing Grant
Hazards SEES Type 2: Magnitude 9 Earthquake Scenarios - Probabilistic Modeling, Warnings, Response and Resilience in the Pacific Northwest
灾害 SEES 2 类:9 级地震情景 - 太平洋西北地区的概率建模、警告、响应和复原力
  • 批准号:
    1331412
  • 财政年份:
    2013
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Continuing Grant
Hazards SEES Type 2: Modeling to Promote Regional Resilience to Repeated Heat Waves and Hurricanes
灾害 SEES 类型 2:建立模型以提高区域对反复出现的热浪和飓风的抵御能力
  • 批准号:
    1331399
  • 财政年份:
    2013
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Continuing Grant
Hazards SEES Type 1: Predicting Landslide Runout and Granular Flow Hazard: Enhanced-g Centrifuge Experiments, Contact Dynamics Model Development and Theoretical Study
灾害 SEES 类型 1:预测滑坡跳动和颗粒流灾害:增强型离心机实验、接触动力学模型开发和理论研究
  • 批准号:
    1331499
  • 财政年份:
    2013
  • 资助金额:
    $ 265.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了