Randomized Models for Nonlinear Optimization: Theoretical Foundations and Practical Numerical Methods
非线性优化的随机模型:理论基础和实用数值方法
基本信息
- 批准号:1319356
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves the design, analysis, and implementation of numerical algorithms for the mathematical optimization of large-scale, complex systems. In particular, the novel feature of the proposed algorithms is the use of random sampling of objective function information in the context of solving deterministic (i.e., non-random) problems. Despite the success of randomization in, e.g., stochastic gradient techniques for machine learning, it has yet to be used actively in other settings as it has been deemed too expensive in sequential computing environments. However, with parallel computing becoming increasingly common, and with new advancements and convergence theory for randomized algorithms, these methods have great promise. The research in this project will focus on the use of ``accurate'' randomized models, broadening of convergence theory, and implementation of effective software. The novelty of the approach lies in achieving a middle ground between deterministic models that have to be accurate at each algorithmic step, and stochastic models that are accurate only in expectation, by exploiting random models that need to be accurate only with sufficiently high probability. The proposed strategies will balance per-iteration cost of the optimization routine with convergence speed while utilizing parallel computation. The priority in the project on developing practical, general-purpose numerical methods based on theoretically sound methodologies solidifies the merits of the proposed work.This project focuses on the development of novel numerical algorithms, and their analysis, for solving problems in two related realms of engineering design. In the first, the aim is to minimize a quantity---e.g., cost, energy, or the discrepancy between expected and observed data---that can only be determined via a computer simulation. These "black-box" optimization problems arise in important areas such as molecular geometry optimization, circuit design, and groundwater modeling. The second area represents those applications in which a given design needs to be robust under various input conditions, which includes problems in, e.g., medical image registration and the optimization of control systems. The project promises to advance the study of algorithms for solving all of these types of problems via the common thread of exploiting randomization and parallel computation.The impact of this work will clearly be cross-disciplinary, and will benefit users of optimization methods and software in academia, governmental research laboratories, and private industry. It will also promote the use of rigorous, classical algorithms in combination with randomized models for solving cutting-edge scientific problems.Finally, the educational plan will expose undergraduate and graduate students to modern efforts and challenges in computational mathematics, improve the educational opportunities for students interested in scientific research, and encourage faculty interaction in area schools.
该项目涉及用于大规模复杂系统数学优化的数值算法的设计、分析和实现。 特别是,所提出算法的新颖特征是在解决确定性(即非随机)问题的背景下使用目标函数信息的随机采样。 尽管随机化在机器学习的随机梯度技术等领域取得了成功,但它尚未在其他环境中积极使用,因为它在顺序计算环境中被认为过于昂贵。 然而,随着并行计算变得越来越普遍,并且随着随机算法的新进步和收敛理论,这些方法具有很大的前景。 该项目的研究将集中于“准确”随机模型的使用、收敛理论的拓宽以及有效软件的实施。 该方法的新颖之处在于,通过利用只需要在足够高的概率下才准确的随机模型,在每个算法步骤都必须准确的确定性模型和仅在期望中准确的随机模型之间实现中间立场。所提出的策略将在利用并行计算的同时平衡优化例程的每次迭代成本与收敛速度。 该项目的优先事项是基于理论上合理的方法开发实用的通用数值方法,这巩固了所提出的工作的优点。该项目的重点是开发新颖的数值算法及其分析,以解决两个相关领域的问题工程设计。 首先,目标是最小化只能通过计算机模拟确定的数量(例如成本、能源或预期数据与观察数据之间的差异)。这些“黑匣子”优化问题出现在分子几何优化、电路设计和地下水建模等重要领域。 第二个领域代表给定设计需要在各种输入条件下保持稳健的应用,其中包括医学图像配准和控制系统优化等问题。 该项目承诺通过利用随机化和并行计算的共同线索来推进解决所有这些类型问题的算法的研究。这项工作的影响显然是跨学科的,并将有利于优化方法和软件的用户学术界、政府研究实验室和私营企业。 它还将促进使用严格的经典算法与随机模型相结合来解决前沿科学问题。最后,该教育计划将使本科生和研究生接触计算数学的现代努力和挑战,改善学生的教育机会对科学研究感兴趣,并鼓励地区学校的教师互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katya Scheinberg其他文献
IBM Research Report Sparse Markov Net Learning with Priors on Regularization Parameters
IBM 研究报告稀疏马尔可夫网络学习与正则化参数的先验
- DOI:
10.1109/isbi.2013.6556531 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Katya Scheinberg;Irina Rish - 通讯作者:
Irina Rish
OPTIMA Mathematical Programming Society Newsletter 79
OPTIMA 数学规划协会时事通讯 79
- DOI:
- 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Katya Scheinberg - 通讯作者:
Katya Scheinberg
Katya Scheinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katya Scheinberg', 18)}}的其他基金
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Adaptive Optimization of Stochastic and Noisy Function
合作研究:AF:小:随机和噪声函数的自适应优化
- 批准号:
2008434 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
跨型号电池差异对其外特性的作用机制及普适性建模与健康度评估研究
- 批准号:52307233
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Petri网和DSM的型号产品协同设计过程和数据世系建模及分析方法研究
- 批准号:61170001
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
相似海外基金
Multimodal Musical Stimulation for Healthy Neurocognitive Aging
多模式音乐刺激促进健康的神经认知衰老
- 批准号:
10351738 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Multimodal Musical Stimulation for Healthy Neurocognitive Aging
多模式音乐刺激促进健康的神经认知衰老
- 批准号:
10584522 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Pathways and Mediators of Change in Early Childhood Development
儿童早期发展变化的途径和中介
- 批准号:
10237381 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Pathways and Mediators of Change in Early Childhood Development
儿童早期发展变化的途径和中介
- 批准号:
10057054 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Modeling and estimation of nonlinear quantile effects in child health research
儿童健康研究中非线性分位数效应的建模和估计
- 批准号:
9109261 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别: