Parametric and nonparametric regressions on spot volatility
现货波动率的参数和非参数回归
基本信息
- 批准号:1326819
- 负责人:
- 金额:$ 25.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project develops new estimation and inference tools for continuous-time semimartingale models sampled at high frequency. The semimartingale model is the most general model for asset prices that precludes arbitrage opportunities and, as a result, has been the workhorse model in modern asset pricing.The primary intellectual merit of the proposed activities is the development of new nonlinear regression methods with the latent volatility process of a semimartingale as a regressor. The volatility process measures the intrinsic variability of the semimartingale. The methods will allow researchers to investigate the statistical relationship between economic variables and the volatility process without imposing strong assumptions.The proposed activity can be divided into three sections. The first section concerns a baseline vector nonlinear regression model involving the volatility. The estimation is performed in two steps. In the first step, the latent volatility process is recovered from high frequency data in a model-free fashion, and in the second step, the regression model is estimated via the generalized methods of moments (GMM). The statistical property of this procedure is studied. These tools allow the user to explore how the volatility process drives other economic variables and to make statistically formal statements. An empirical application is included for illustrating the use of the method.The second section extends the first section by allowing the regression model to be possibly misspecified. This extension sheds light on the robustness of the estimation method in a realistic setting in which the regression model is only considered as an approximation of the true model. The analysis on misspecified models facilitates the comparison and evaluation of competing models.The third section introduces a new regression framework which can be applied to perform nonlinear projection of the sample path of a latent volatility process onto that of another volatility process. In financial applications, the method can be used to explore how volatilities of multiple assets co-vary with each other. While the motivating examples in the proposed activity are those of financial models, the methods developed in this project are valid for generic semimartingales. Besides economics and finance, semimartingales have also been used in biological, chemical, and electrical applications, where high frequency data are also available. One can hope that some of the statistical methods developed here can find applications in these fields.
该研究项目开发了以高频采样的连续时间半明星模型的新估计和推理工具。 Semimartingale模型是排除套利机会的资产价格最通用的模型,结果是现代资产定价中的主力模型。拟议活动的主要知识分子是开发了新的非线性回归方法,该方法具有潜在的潜在方式半明星作为回归剂的波动过程。挥发性过程测量了半木制的内在变异性。这些方法将使研究人员能够研究经济变量与波动率过程之间的统计关系,而无需实现强烈的假设。拟议活动可以分为三个部分。第一部分涉及涉及波动率的基线矢量非线性回归模型。估计分两个步骤进行。在第一步中,潜在的波动过程以无模型方式从高频数据中恢复,在第二步中,通过通用矩(GMM)估算回归模型。研究了此过程的统计属性。这些工具允许用户探索波动性过程如何驱动其他经济变量并制作统计正式陈述。包括经验应用程序以说明方法的使用。第二部分通过允许记录模型可能被误指定来扩展第一部分。该扩展在现实环境中阐明了估计方法的鲁棒性,在现实设置中,回归模型仅被视为真实模型的近似值。对错误指定模型的分析促进了竞争模型的比较和评估。第三部分引入了一个新的回归框架,该框架可用于对潜在波动率过程的样本路径进行非线性投影,以在另一个波动性过程的过程中。在财务应用中,该方法可用于探索多个资产的波动如何彼此共同。拟议活动中的激励示例是财务模型的示例,但该项目中开发的方法对于通用半明星有效。除了经济学和金融外,半明星还用于高频数据的生物,化学和电气应用中。可以希望这里开发的一些统计方法可以在这些领域中找到应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Li其他文献
The influence of rolling pressure on the changes in non-volatile compounds and sensory quality of congou black tea: The combination of metabolomics, E-tongue, and chromatic differences analyses.
- DOI:
10.1016/j.fochx.2023.100989 - 发表时间:
2023-12-30 - 期刊:
- 影响因子:6.1
- 作者:
Shan Zhang;Shimin Wu;Qinyan Yu;Xujiang Shan;Le Chen;Yuliang Deng;Jinjie Hua;Jiayi Zhu;Qinghua Zhou;Yongwen Jiang;Haibo Yuan;Jia Li - 通讯作者:
Jia Li
Brassica napus BBM-GR Transformants from Bulk-Way Transformation
来自批量转化的甘蓝型油菜 BBM-GR 转化子
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
吴晗;Han Wu;Jiaxu Wang;Kuang;Ying Zhao;Youhou Duan;Jia Li;Zhiqiang Liu;Zhipeng Zhang - 通讯作者:
Zhipeng Zhang
Original Article Association of serum lipid metabolism with markers of urinary peptides in type 2 diabetes patients
原创文章 2型糖尿病患者血脂代谢与尿肽标志物的关系
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jia Li;Fu Guangzhen;Junjun Wang;Man Zhang - 通讯作者:
Man Zhang
A Corpus-Based Study on the Classification and Processing Mechanism of English-Chinese One-To-Many Translation-Equivalent Word Pairs
基于语料库的英汉一对多翻译对等词对分类及处理机制研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Quanbei Zhao;Jia Li;Hongbing Xing - 通讯作者:
Hongbing Xing
The incidence of pseudoprogressive disease associated with programmed cell death 1/programmed cell death ligand 1 inhibitors
与程序性细胞死亡 1/程序性细胞死亡配体 1 抑制剂相关的假进行性疾病的发生率
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.6
- 作者:
Jingyi Zhang;K. Tan;Xuejiao Jiang;Shu;Jia Li;C. Xue;Xu Zhang;H. Cui - 通讯作者:
H. Cui
Jia Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Li', 18)}}的其他基金
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
CAREER: studying superconductivity and ferromagnetism in 2D material heterostructures with flat energy band
职业:研究具有平坦能带的二维材料异质结构中的超导性和铁磁性
- 批准号:
2143384 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Continuing Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
- 批准号:
2205004 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Cluster Analysis for High-Dimensional and Multi-Source Data
高维多源数据聚类分析
- 批准号:
2013905 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
- 批准号:
1462230 - 财政年份:2015
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Statistical Learning for Image Annotation
图像标注的统计学习
- 批准号:
1521092 - 财政年份:2015
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Estimation and Inference Methods for Continuous-Time Models
连续时间模型的估计和推理方法
- 批准号:
1227448 - 财政年份:2012
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Modeling of Mosquitoes Carrying Transgenes or Genetically Modified Bacteria in Preventing the Transmission of Mosquito-Borne Diseases
携带转基因或转基因细菌的蚊子模型以预防蚊媒疾病的传播
- 批准号:
1118150 - 财政年份:2011
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
The Second International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems; October 2009; Huntsville, Alabama
第二届生物系统群体数学建模与分析国际会议;
- 批准号:
0931213 - 财政年份:2009
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Essential Roles of Receptor-Like Kinases in Brassinosteroid and Cell-Death Control Signaling Pathways
受体样激酶在油菜素类固醇和细胞死亡控制信号通路中的重要作用
- 批准号:
0849206 - 财政年份:2009
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
相似国自然基金
非参数和半参数回归模型中的设定检验及其应用
- 批准号:72373007
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于级数估计的非参数和半参数股票收益预测模型研究
- 批准号:71703045
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
非参数空间滞后分位数回归模型的理论与应用研究
- 批准号:71703025
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
含方向变量的高维数据的多元非参数回归建模及降维研究
- 批准号:11701069
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于投影的多元非参数回归曲线比较及若干拓展问题
- 批准号:11601227
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
From Covariance Regressions to Nonparametric Dynamic Causal Modelling (CoreDCM)
从协方差回归到非参数动态因果建模 (CoreDCM)
- 批准号:
EP/X038297/1 - 财政年份:2023
- 资助金额:
$ 25.56万 - 项目类别:
Research Grant
Bayesian Nonparametric Methodology for CER: Instrumental Variables Models
CER 的贝叶斯非参数方法:工具变量模型
- 批准号:
8036807 - 财政年份:2010
- 资助金额:
$ 25.56万 - 项目类别:
NONPARAMETRIC ESTIMATION OF Q VALUES AND POSTERIOR ERROR PROBABILITIES
Q 值和后验误差概率的非参数估计
- 批准号:
7957811 - 财政年份:2009
- 资助金额:
$ 25.56万 - 项目类别:
Robust Nonparametric Regressions and the phase problem
鲁棒非参数回归和相位问题
- 批准号:
46583-1990 - 财政年份:1992
- 资助金额:
$ 25.56万 - 项目类别:
Discovery Grants Program - Individual